Все погрешности электро приборов

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний по­веряемого прибора с показаниями более точного, образцового прибора при измерении ими од­ной и той же величины. Значение измеряемой величины, определенное по образцовому прибо­ру, принято считать действительным. Однако действительное значение отличается от истинно­го на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютной погрешностью измерительного прибора называют разность между его показанием и действительным значением измеряемой величины.

Относительной погрешностью называют отношение абсолютной погрешности к действительному зна­чению измеряемой величины, выраженное в относительных единицах или в процентах.

Приведенная погрешность – это отношение наибольшей абсолютной погрешности к верхнему пределу измерений прибора.

По значению приведенной погрешности измерительные приборы делят на группы по классу точности. Класс точности обобщенная характеристика измерительного прибора, определяющая пре­делы допустимых погрешностей. Для электроизмерительных приборов класс точности указывается в вида числа, равного максимальной допустимой приведенной погреш­ности (в %). Согласно ГОСТ 1845-59, электроизмерительные приборы делят на 8 классов по точности: 0,05; 0,1; 0,2 – образцовые приборы; 0,5; 1,0 – лабораторные; 1,5; 2,5; 4,0 – технические приборы. Об­разцовые приборы считаются более высокого класса точности по отношению к лабораторным и техническим приборам, а лабораторные – по отношению к техническим.

Определим по классу точности прибора его погрешности. Если прибор (например, вольтметр с верхним пределом измерений 150 В) имеет класс точности 1,0, то основная приведенная погрешность не превышает 1 %. Максимальная абсолютную по­грешность, которую может иметь прибор в любой точке шкалы не будет превышать

Все погрешности электро приборов

Относительная же погрешность при этом зависит от измеряемого напряжения.

Если этим вольтметром можно измерять напряжение 10 В, то относительная погрешность может составить

Все погрешности электро приборов

. Если же измерять напряжение 100 В, то относительная погрешность может составить

Из этого примера видно, что для повышения точности измерения прибор надо выбирать так, чтобы, во-первых, он имел более высокий класс точности, и чтобы, во-вторых, предел измерения был бли­зок к значению измеряемой величины. Это означает, что для получения возможно меньших относительных ошибок, надо добиваться достаточно большого отклонения стрелки (желательно, чтобы использовалась последняя треть шкалы).

С другой стороны, для того чтобы добиться большой точности при измерении прибором более низкого класса, необходимо выбрать прибор с наименьшим возможным диапазоном измерений.

Следует правильно формулировать предложение, в котором дана количественная оценка по­грешности. Например: «Измерение тока с абсолютной погрешностью до 1 мА», «Измерение то­ка с относительной погрешностью до 1 %. (Выражение «Измерение тока с точностью до 1 мА» неправильно).

Погрешности измерений и электроизмерительных приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Важнейшими характеристиками средств измерения, отличающими их от других технических средств, являются метрологические характеристики, с помощью которых определяют значение измеряемой величины и аппаратную составляющую погрешности результата измерений.

К метрологическим характеристикам относятся погрешности средств измерения, чувствительность, цена деления и т. д.

Погрешность средства измерения – метрологическая характеристика, количественно выражающая отклонение номинального значения физической величины, измеряемое данным средством, от истинного значения.

Погрешности измерений можно подразделить на три группы: грубые (промахи), систематические и случайные.

Грубые погрешности иногда называют субъективными, т. к. они чаще всего возникают вследствие невнимательности человека или недостаточной его квалификации и опыта.

Случайными погрешностями называют погрешности, значение и знак которых не могут быть заранее указаны. Такие погрешности определяют путем многократного повторения измерений и применением статистических методов обработки результатов этих измерений. Систематические погрешности – это погрешности, абсолютное значение и знак которых либо известны, либо могут быть определены. К ним относятся: погрешности измерительного прибора, погрешности метода измерения и измерительного устройства, погрешности от пренебрежения малыми значениями величин, погрешности от влияния внешних факторов.

Систематические погрешности измерительного прибора подразделяются на аддитивные, пропорциональные и погрешности делений шкалы.

Типичная аддитивная погрешность возникает, когда стрелка измерительного прибора не находится, в отсутствие измерительного сигнала, на нулевой отметке.

Пропорциональные погрешности возникают в частности из-за отклонения от номинальных значений сопротивлений добавочных резисторов и шунтов показывающих приборов.

Погрешности делений шкалы устанавливаются и определяются путем поверки приборов с применением более точных образцовых приборов.

Систематические погрешности метода измерения и измерительного устройства возникают, например, когда ЭДС источника напряжения измеряют вольтметром с конечным внутренним сопротивлением.

Электроизмерительные приборы характеризуются чувствительностью, т. е. способностью реагировать на изменения входного сигнала. Чувствительность представляет собой отношение изменения сигнала Δy на выходе прибора к вызвавшему его изменению сигнала Δx на входе прибора: S = Δy/Δx. Чувствительность прибора имеет размерность, зависящую от характера измеряемой величины.

Величина, обратная чувствительности, называется ценой деления электроизмерительного прибора: С = 1/S. Она равна числу единиц измеряемой величины, приходящихся на одно деление шкалы. Если, например, S = 10 дел./А, то С = 0,1 А/дел.

В зависимости от условий применения средств измерения различают также основную и дополнительную погрешности.

Основная погрешность – погрешность средств измерения, используемых в нормальных условиях (при нормальном рабочем положении прибора, нормальной температуре окружающей среды, влажности, давлении, отсутствии внешних электрических и магнитных полей кроме земного магнетизма и т. п.).

Дополнительная погрешность – это погрешность средств измерения, возникающая в результате отклонения одной из влияющих величин от нормального значения.

Основная и дополнительная погрешности прибора, как и измерения, могут быть абсолютными и относительными.

Абсолютная погрешность прибора в данной точке диапазона измерения равна

хi – истинное значение измеряемой величины.

В связи с тем, что истинное значение чаще всего неизвестно, на практике вместо него используется действительное значение хд, в качестве которого применяют либо среднее арифметическое значение ряда измерений, либо показания образцового прибора. По этой причине на практике значение погрешности можно оценить только приближенно.

Абсолютная погрешность может быть положительной и отрицательной. Она выражается в тех же единицах, что и измеряемая величина. Абсолютная погрешность с обратным знаком называется поправкой. Очевидно, что абсолютная погрешность прибора выражается в тех же единицах, что и измеряемая величина.

Абсолютная погрешность δ прибора не характеризует в полной мере точность измерения, поэтому при измерениях определяется также относительная погрешность – отношение абсолютной погрешности к истинному (действительному) значению измеряемой величины

Все погрешности электро приборов

Все погрешности электро приборов

(6.2)

Относительная приведенная погрешность γэлектрического измерительного прибора равна отношению абсолютной погрешности к нормирующему значению xn,которое принимается видом шкалы (рисунок 6.1):

Все погрешности электро приборов

Все погрешности электро приборов

(6.3)

Все погрешности электро приборов

Все погрешности электро приборов

Относительная погрешность обычно существенно изменяется вдоль шкалы прибора и с уменьшением значений измеряемой величины увеличивается.

Точность электроизмерительного прибора является одним из важнейших показателей, характеризующих его качество. Она определяется величиной погрешности (наибольшей ошибки), которая может иметь место при измерении какой-либо величины.

Класс точности основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

Класс точности записывается в виде числа, которое указывает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 – 30 В, класс точности 1,0 предполагает, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В.

Согласно ГОСТ, приборам непосредственной оценки присваивают классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5 и 4,0.

В таблице 6.1 приведены классы точности, допустимые значения основной относительной погрешности и область применения соответствующих приборов.

Таблица 6.1 –Классы точности, допустимые значения основной относительной погрешности и область применения соответствующих приборов

Класс точности прибора Допустимое значение величины основной погрешности, % Класс точности вспомогательного устройства для расширения пределов измерения прибора Характеристика и область применения прибора
0,05 + 0,05 0,02 Образцовые приборы.
0,1 ± 0,1 0,05 Применяются для особо точных измерений.
0,2 0,5 + 0,2 ± 0,5 0,1 0,1 Точные лабораторные приборы. Применяются для изме-рений в лабораториях и т.п.
1,0 1,5 + 1,0 ± 1,5 0,5 1,0 Точные технические щитовые приборы. Применяются для обычных измерений.
2,5 ± 2,5 1,0 Щитовые приборы.
4,0 ± 4,0 1,0 Грубые технические приборы.

Пример 6.1 Определить точность результата измерения напряжения сети 220 В с помощью двух вольтметров класса 2,5 каждый, если предел измерения одного вольтметра равен 250 В, второго – 500 В.

Решение. Абсолютные погрешности прибора со шкалой 250 В: (250/100) · (± 2,5) = ± 6,25 В, со шкалой 500 В: (500/100) · (+ 2,5) = = ±12,5 В.

Из примера видно, что погрешность измерения в первом случае будет меньше. Поэтому необходимо пользоваться тем прибором, предел измерения которого ближе к предполагаемому значению измеряемой величины.

Электрические измерения, класс точности, погрешность приборов измерения.

В системах электроснабжения измеряют ток (I), напряжение (U), активную и реактивную мощности (Р, ), электроэнергию, активное, реактивное и полное сопротивление (P, Q), частоту (f), коэффициент мощности (cosφ); при энергоснабжении измеряют температуру (Ө), давление (р), расход энергоносителя (G), тепловую энергию (Е), перемещение (Х) и др.

В условиях эксплуатации обычно используют методы непосредственной оценки для измерения электрических величин и нулевой — для неэлектрических величин.

Электрические величины измеряют электроизмерительными приборами.

Электроизмерительным прибором называется устройство, предназначенное для измерения электрической величины, например, напряжения, тока, сопротивления, мощности и т. д.

По принципу действия и конструктивным особенностям приборы бывают: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, индукционные, вибрационные и другие. Электроизмерительные приборы классифицируются также по степени защищенности измерительного механизма от влияния внешних магнитных и электрических полей на точность его показаний, по способу создания противодействующего момента, по характеру шкалы, по конструкции отсчетного устройства, по положению нулевой отметки на шкале и другим признакам.

На шкале электроизмерительных приборов нанесены условные обозначения, определяющие систему прибора, его техническую характеристику.

Измерение электрической энергии, вырабатываемой генераторами или потребляемой потребителями, осуществляется счетчиками.

для измерения электрической энергии переменного тока в основном применяют счетчики с измерительным механизмом индукционной системы и электронные. Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Точность измерения — качество измерения, отражающее близость его результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малой погрешности.

Погрешность измерительного прибора — разность между показаниями прибора и истинным значением измеряемой величины.

Результат измерения — значение величины, найденное путем ее измерения.

При однократном измерении показание прибора является результатом измерения, а при многократном — результат измерения находят путем статистической обработки результатов каждого наблюдения. По точности результатов измерения подразделяют на три вида: очные (прецизионные), результат которых должен иметь минимальную погрешность; контрольно-поверочные, погрешность которых не должна превышать некоторого заданного значения; технические, результат которых содержит погрешность, определяемую погрешностью измерительного прибора. Как правило, точные и контрольно-оверочные измерения требуют многократных наблюдений.

По способу выражения погрешности средств измерений разделяют на абсолютные, относительные и приведенные.

Абсолютная погрешность ΔА — разность между показанием прибора А и действительным значением измеряемой величины А.

Все погрешности электро приборов

Относительная погрешность

Все погрешности электро приборов

— отношение абсолютной погрешности ΔА к значению измеряемой величины А, выраженное в процентах:

Все погрешности электро приборов

.

Приведенная погрешность

Все погрешности электро приборов

(в процентах) — отношение абсолютной погрешности ЛА к нормирующему значению

Все погрешности электро приборов

:

Все погрешности электро приборов

.

Для приборов с нулевой отметкой на краю или вне шкалы нормирующее значение равно конечному значению диапазона измерений. Для приборов с двухсторонней шкалой, т. е. с отметками шкалы, расположенными по обе стороны от нуля, оно равно арифметической сумме конечных значений диапазона измерений. Для приборов с логарифмической или гиперболической шкалой нормирующее значение равно длине всей шкалы.

Таблица 1. Классы точности* средств измерений

Класс точности шунта, добавочного резистора

Класс точности измерительного преобразователя

Класс точности измерительного трансформатора

*Класс точности численно равен наибольшей допустимой приведенной основной погрешности, выраженной в процентах.

Средства измерений электрических величин должны удовлетворять следующим основным требованиям (ПУЭ):

1) класс точности измерительных приборов должен быть не хуже 2,5;

2) классы точности измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не хуже приведенных в табл. 1.;

3) пределы измерения приборов должны выбираться с учетом возможных наибольших длительных отклонений измеряемых величин от номинальных значений.

Учет активной электрической энергии должен обеспечивать определение количества энергии: выработанной генераторами ЭС; потребленной на с. н. и хозяйственные нужды (раздельно) ЭС и ПС; отпущенной потребителям по линиям, отходящим от шин ЭС непосредственно к потребителям; переданной в др. энергосистемы или полученной от них; отпущенной потребителям из электрической сети. Кроме того, учет активной электрической энергии должен обеспечивать возможность: определения поступления электрической энергии в электрические сети разных классов напряжений энергосистемы; составления балансов электрической энергии для хозрасчетных подразделений энергосистемы; контроля за соблюдением потребителями заданных им режимов потребления и баланса электрической энергии.

Учет реактивной электрической энергии должен обеспечивать возможность определения количества реактивной электрической энергии, полученной потребителем от электроснабжающей организации или переданной ей, только в том случае, если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.

Измерение тока должно производиться в цепях всех напряжений, где оно необходимо для систематического контроля технологического процесса или оборудования.

Измерение постоянного тока в цепях: генераторов постоянного тока и силовых преобразователей; АБ, зарядных, подзарядных и разрядных устройств; возбуждения СГ, СК, а также электродвигателей с регулируемым возбуждением.

Амперметры постоянного тока должны иметь двусторонние шкалы, если возможно изменение направления тока.

В цепях трехфазного тока следует, как правило, измерять ток одной фазы.

Измерение тока каждой фазы должно производиться:

для ТГ 12 МВт и более; для ВЛ с пофазным управлением, линий с продольной компенсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме; в обоснованных случаях может быть предусмотрено измерение тока каждой фазы ВЛ 330 кВ и выше с трехфазным управлением; для дуговых электропечей.

Измерение напряжения должно производиться:

1. На секциях сборных шин постоянного и переменного тока, которые могут работать раздельно. допускается установка одного прибора с переключением на несколько точек измерения. На ПС напряжение допускается измерять только на стороне НН, если установка ТН на стороне ВН не требуется для других целей.

2. В цепях генераторов постоянного и переменного тока, СК, а также в отдельных случаях в цепях агрегатов специального назначения.

При автоматизированном пуске генераторов или др. агрегатов установка на них приборов для непрерывного измерения напряжения не обязательна.

3. В цепях возбуждения СМ от 1 МВт и более.

4. В цепях силовых преобразователей, АБ, зарядных и подзарядных устройств.

5. В цепях дугогасящих катушек.

В трехфазных сетях производится измерение, как правило, одного междуфазного напряжения. В сетях выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжения одним прибором (с переключением).

Должна производиться регистрация значений одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) ЭС и подстанций, по напряжению на которых ведется режим энергосистемы.

Контроль изоляции. В сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, в сетях переменного тока до 1 кВ с изолированной нейтралью и в сетях постоянного тока с изолированными полюсами или с изолированной средней точкой, как правило, должен выполняться автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции одной из фаз (или полюса) ниже заданного значения, с последующим контролем асимметрии напряжения при помощи показывающего прибора (с переключением). допускается осуществлять контроль изоляции путем периодических измерений напряжений с целью визуального контроля асимметрии напряжения.

Измерение мощности:

1. Генераторов активной и реактивной мощности.

При установке на ТГ 100 МВт и более щитовых показываю- щих приборов их класс точности должен быть не ниже 1,0.

ЭС 200 МВт и более — суммарной активной мощности.

Рекомендуется измерять суммарную активную мощность ЭС менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления.

2. Конденсаторных батарей 25 Мвар и более и СК реактивной мощности.

3. Трансформаторов и линий, питающих с. н. б кВ и выше ЭС, активной мощности.

4. Повышающих двухобмоточных трансформаторов ЭС — активной и реактивной. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки НН) измерение активной и реактивной мощности должно производиться со стороны СН и НН. для трансформатора, работающего в блоке с генератором, измерение мощности со стороны НИ следует производить в цепи генератора.

5. Понижающих трансформаторов 220 кВ и выше — активной и реактивной, 110—150 кВ — активной мощности.

В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны НН, а в цепях понижающих трехобмоточных трансформаторов — со стороны СН и НН.

На ПС 110—220 кВ без выключателей на стороне ВП измерение мощности допускается не выполнять.

6. Линий 110 кВ и выше с двусторонним питанием, а также обходных выключателей — активной и реактивной мощности.

7. На других элементах ПС, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.

должна производиться регистрация: активной мощности ТГ 60 МВт и более; суммарной мощности ЭС (200 МВт и более).

Измерение частоты:

1. На каждой секции шин генераторного напряжения.

2. На каждом ТГ блочной ЭС или АЭС.

3. На каждой системе (секции) шин ВН ЭС.

4. В узлах возможного деления энергосистемы на несинхронно работающие части.

Регистрация частоты или ее отклонения от заданного значения должна производиться: на ЭС 200 МВт и более; на ЭС б МВт и более, работающих изолированно.

Абсолютная погрешность регистрирующих частотомеров на ЭС, участвующих в регулировании мощности, должно быть не более 0,1 Гц.

Измерения при синхронизации. Для измерения при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы: два вольтметра (или двойной вольтметр); два частотомера (или двойной частотомер); синхроноскоп.

Регистрация электрических величин в аварийных режимах. для автоматической регистрации аварийных процессов в электрической части энергосистем должны предусматриваться автоматические осциллографы. Расстановка автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров производятся по указаниям ПУЭ.

Для определения мест повреждений на ВЛ 110 кВ и выше длиной более 20 км должны предусматриваться фиксирующие приборы.

Таблица 2. Характеристика измерительных приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

,

Все погрешности электро приборов

— токи катушек

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

,

Все погрешности электро приборов

— токи катушек

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

,

Все погрешности электро приборов

— токи катушек

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

— ток неподвижной катушки

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

— ток неподвижной катушки

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

,

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Все погрешности электро приборов

Современные промышленные предприятия и жилищно-коммунальные хозяйства характеризуются потреблением различных видов энергии: электроэнергии, тепла, газа, сжатого воздуха и др. для наблюдения за режимом потребления энергии необходимо измерять и регистрировать электрические и неэлектрические величины с целью дальнейшей обработки информации.

В электроснабжении измеряют ток (I), напряжение (U), активную и реактивную мощности (Р, Q), электроэнергию (W), активное, реактивное и полное сопротивления (R, Х, Z), частоту (f), коэффициент мощности (cosφ); в энергоснабжении — температуру (Ө), давление (р), расход энергоносителя (G), тепловую энергию (Е), перемещение (Х) и др.

Номенклатура приборов, используемых в энергоснабжении для измерения электрических и неэлектрических величин, весьма разнообразна как по методам измерений, так и по сложности преобразователей. Наряду с методом непосредственной оценки часто используют нулевой и дифференциальный методы, повышающие точность.

Ниже дана краткая характеристика измерительных приборов по принципу действия.

Магнитоэлектрические приборы имеют высокую чувствительность, малое потребление тока, плохую перегрузочную способность, высокую точность измерений. Амперметры и вольтметры имеют линейные шкалы, и используются часто как образцовые приборы, имеют малую чувствительность к внешним магнитным полям.

Электромагнитные приборы имеют невысокую чувствительность, значительное потребление тока, хорошую перегрузочную способность, невысокую точность измерений. Шкалы не линейны и линеаризуются в верхней части специальным выполнением механизма. Чаще используются как щитовые технические приборы, просты и надежны в эксплуатации; чувствительны к внешним магнитным полям.

Электродинамические и ферродинамические приборы обладают невысокой чувствительностью, большим потреблением тока, чувствительностью к перегрузкам, высокой точностью. У амперметров и вольтметров — нелинейные шкалы. Важной положительной особенностью являются одинаковые показания на постоянном и переменном токах, что позволяет поверять их на постоянном токе. Чаще они используются как лабораторные приборы.

Приборы индукционной системы характеризуются невысокой чувствительностью, существенным потреблением тока, нечувствительностью к перегрузкам. Преимущественно они служат счетчиками энергии переменного тока. Такие приборы выпускаются одно-, двух- и трехэлементными для работы в цепях однофазных, трехфазных трехпроводных, трехфазных четырехпроводных. для расширения пределов используются трансформаторы тока и напряжения.

Электростатические приборы имеют невысокую чувствительность, но чувствительны к перегрузкам и служат для измерения напряжения на постоянном и переменном токах. для расширения пределов используются емкостные и резистивные делители.

Термоэлектрические приборы характеризуются низкой чувствительностью, большим потреблением тока, низкой перегрузочной способностью, невысокой точностью и нелинейностью шкалы. Однако их показания не зависят от формы тока в широком диапазоне частот. для расширения пределов амперметров используют высокочастотные трансформаторы тока.

Выпрямительные приборы характеризуются высокой чувствительностью, малым потреблением тока, небольшой перегрузочной способностью, линейностью шкалы. Показания приборов зависят от формы тока. Используются они в качестве амперметров и вольтметров.

Цифровые электронные измерительные приборы преобразуют аналоговый входной сигнал в дискретный, представляя его в цифровой форме с помощью цифрового отсчетного устройства (ЦОУ) и могут выводить информацию на внешнее устройство — дисплей, цифропечать. преимуществами цифровых измерительных приборов (ЦИИ) являются:

— автоматический выбор диапазона измерения;

— автоматический процесс измерения;

— вывод информации в коде на внешние устройства;

— представление результата измерений с высокой точностью.

Источник