В качестве какого прибора в автомобиле можно использовать ионистор

Ионистор. Устройство и применение. Работа. Авто-пусковое устройство

В прошлом веке американский химик Райтмаер получил патент на устройство, сохраняющее электрическую энергию с двойным электрическим слоем. Сегодня такое устройство называется ионистор. В разных источниках они могут иметь различные названия: суперконденсаторы, ультраконденсаторы. По размерам и внешнему виду они похожи на электролитические конденсаторы, с отличием, заключающимся в большой емкости.

В зарубежных странах они имеют короткое обозначение – EDLC, что в переводе с английского значит: конденсатор, обладающий двойным электрическим слоем. По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора.

Устройство и принцип действия

Если сравнивать устройство ионистора с конструкцией конденсатора, то разница заключается в отсутствии слоя диэлектрика у ионистора. В качестве обкладок выступают вещества, имеющие носители заряда противоположных знаков.

Емкость любого конденсатора, так же как ионистора зависит от размера обкладок. Поэтому у ионистора обкладки сделаны из активированного угля или вспененного углерода. Таким способом получают значительную площадь модифицированных обкладок. Выводы ионистора разделены сепаратором, помещенным в электролит. Они предназначены для предотвращения возможного короткого замыкания. Состав электролита: щелочи и кислоты в твердом и кристаллическом виде.

В качестве какого прибора в автомобиле можно использовать ионистор

Если использовать кристаллический твердый электролит на основе йода, серебра и рубидия, то можно изготовить ионистор, обладающий большой емкостью, низким саморазрядом и способный функционировать при пониженных температурах. Возможно производство аналогичных ультраконденсаторов, на базе электролита из раствора серной кислоты. Такие устройства имеют малое внутреннее сопротивление, но также небольшое рабочее напряжение 1 вольт. В настоящее время ионисторы, содержащие электролиты из кислот и щелочей практически не изготавливают, так как они обладают повышенными токсичными свойствами.

В результате протекания электрохимических реакций незначительное число электронов отрывается от полюсов устройства, обеспечивая им положительный заряд. Находящиеся в электролите отрицательные ионы притягиваются полюсами, имеющими положительный заряд. В результате создается электрический слой.

Заряд в ультраконденсаторе сохраняется на границе углеродного полюса и электролита. Электрический слой, образованный катионами и анионами, имеет очень малую толщину, равную от 1 до 5 нанометров, что позволяет значительно повысить емкость ультраконденсатора.

Классификация

  • Идеальные. Это ионные конденсаторы с идеально поляризуемыми электродами, состоящими из углерода. Такие суперконденсаторы работают не за счет электрохимических реакций, а благодаря переносу ионов между электродами. Электролиты могут состоять из щелочи калия, серной кислоты, а также органических веществ.
  • Гибридные. Это суперконденсаторы с идеально поляризуемым электродом, изготовленным из углерода, и слабо поляризуемым анодом или катодом. В их работе частично используется электрохимическая реакция.
  • Псевдоконденсаторы. Это устройства, накапливающие заряд путем использования обратимых электрохимических реакций на поверхности электродов. Они обладают повышенной удельной емкостью.
Рабочие параметры ионисторов:

В инструкции на суперконденсатор обычно указывается величина внутреннего сопротивления при частоте тока 1 килогерц. Чем меньше их внутреннее сопротивление, тем быстрее происходит заряд.

Изображение на схемах

На электрических схемах ионисторы изображаются по типу электролитического конденсатора, и отличить его можно только по величине номинальных параметров.

В качестве какого прибора в автомобиле можно использовать ионистор

Если, например, на схеме указана величина емкости 1 Фарада, то сразу ясно, что изображен ионистор, так как таких емких электролитических конденсаторов не бывает. Напряжение ультраконденсатора также может говорить об его отличии от электролитического конденсатора, так как обычно это незначительная величина в несколько вольт (от 1 до 5 В). Ионисторы не способны функционировать при большом напряжении.

Преимущества

  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.
Применение

Ионисторы часто встречаются в устройстве цифрового оборудования. Они играют роль запасного источника питания микроконтроллера, микросхемы и т.д. С помощью такого источника при выключенном основном питании аппаратура способна сохранять настройки и обеспечивать питание встроенных часов. Например, в некоторых аудиоплеерах применяется миниатюрный ионистор.

В момент замены батареек или аккумуляторов в плеере могут сбиться настройки частоты радиостанции, часов. Благодаря встроенному ионистору этого не происходит. Он питает электронную схему. Его емкость значительно меньше аккумулятора, но его хватает на несколько суток, чтобы сохранить работу часов и настроек.

Также ультраконденсаторы используются для работы таймеров телевизора, микроволновой печи, сложного медицинского оборудования.

Были случаи опытного использования ионисторов, например, для проектирования электромагнитной пушки, которую называют Гаусс оружием.

В быту ионисторы используются в схемах маломощных светодиодных фонариков. Его зарядка может выполняться от солнечных элементов.

Автомобильное пусковое устройство

Популярным примером использования мощного ионистора можно назвать пусковое устройство для двигателя автомобиля.

В качестве какого прибора в автомобиле можно использовать ионистор

Эта схема выполняется на легковых автомобилях любой марки с напряжением сети 12 вольт.

  • 1 – положительный контакт аккумуляторной батареи.
  • 2 – контакт массы (отрицательный полюс).
  • 3 – клемма замка зажигания.
  • В1 – аккумулятор.
  • Кс – замок зажигания.
  • К1 и К1.1 – контактор с ключом управления.
  • С – ионистор.
  • Rс – сопротивление для ограничения зарядного тока ультраконденсатора.

В схеме применяется ионистор со следующими параметрами:

  • Максимальное напряжение 15 вольт.
  • Внутреннее сопротивление 0,0015 Ом.
  • Емкость 216 Фарад.
  • Рабочий ток 2000 ампер.

Такого пускового устройства достаточно, чтобы запустить двигатель мощностью до 150 л. с. ультраконденсатор способен получить полный заряд за пять секунд. Такое устройство можно найти в продаже, но сделать его самостоятельно намного дешевле.

Суперконденсаторы вместо аккумулятора в автомобиле

В качестве какого прибора в автомобиле можно использовать ионистор

Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится

Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя

Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.

В качестве какого прибора в автомобиле можно использовать ионистор

Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.

Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.

В качестве какого прибора в автомобиле можно использовать ионистор

После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.

В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.

В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема

Вот схема второго прототипа батареи.

В качестве какого прибора в автомобиле можно использовать ионистор

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.

Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

В качестве какого прибора в автомобиле можно использовать ионистор

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.

А заряжается аккумуляторная батарея через контроллер зарядки.

В качестве какого прибора в автомобиле можно использовать ионистор

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.

Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах

Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.

Может ли ионистор заменить аккумулятор?

В качестве какого прибора в автомобиле можно использовать ионистор

На сегодняшний день аккумуляторные технологии значительно продвинулись и стали более совершенными по сравнению с прошлым десятилетием. Но все же, пока что аккумуляторные батареи остаются расходным материалом, потому как имеют небольшой ресурс.

Мысль о том, чтобы использовать, конденсатор для накопления и хранения энергии не нова и первые эксперименты проводились с электролитическими конденсаторами. Ёмкость у электролитических конденсаторов бывает значительной – сотни тысяч микрофарад, но все же ее недостаточно для того, чтобы длительное время питать хоть и не большую нагрузку, притом присутствует значительный ток утечки, обусловленный особенностями конструкции.

Современные технологии не стоят на месте, и был изобретен ионистор, это конденсатор, имеет сверхбольшую емкость – от единиц фарад и до десятков тысяч фарад. Ионисторы емкостью единицы фарад используются в портативной электронике, для обеспечения бесперебойного питания слаботочных цепей, например микроконтроллера. А ионисторы емкостью десятки тысяч фарад используются совместно с аккумуляторами для питания различных электродвигателей. В такой комбинации ионистор позволяет уменьшить нагрузку на аккумуляторные батареи, что значительно увеличивает их срок службы аккумулятора и одновременно увеличивает стартовый ток, который способна отдать гибридная система питания двигателя.

В качестве какого прибора в автомобиле можно использовать ионистор

Появилась необходимость запитать датчик температуры, таким образом, чтобы не менять в нем батарейку. Датчик питается от батареи типоразмера АА и включается для отправки данных на погодную станцию один раз в 40 секунд. В момент отправки датчик потребляет в среднем 6 мА в течение 2 секунд.

Возникла идея использовать солнечную батарею и ионистор. Исходя из выявленных характеристик потребления датчика, были взяты следующие элементы:
1. Солнечная батарея 5 Вольта и ток примерно 50 мА (Солнечная батарея Советского производства возрастом примерно 15 лет)
2. Ионистор: Panasonic 5.5 Вольт и емкостью 1 фарад.
3. Ионисторы 2 шт: DMF 5.5 Вольт и общей емкостью 1 фарад.
4. Диод Шотки с прямым падением напряжения при малом токе 0.3 В.
Диод Шотки необходим для того чтобы предотвратить разряд емкости через солнечную батарею.
Ионисторы соединены параллельно, и общая емкость составляет 2 фарады.

В качестве какого прибора в автомобиле можно использовать ионистор

Фото 1.

Эксперимент №1 – Подключил микроконтроллер с монохромным ЖК-дисплеем и общим током потребления 500 мкА. Хотя микроконтроллер с дисплеем и заработали, но я заметил, что старые солнечные элементы крайне не эффективны, ток заряда в тени был недостаточным для того, чтобы хоть сколько-нибудь зарядить ионисторы, напряжение на 5ти вольтовой солнечной батареи в тени было меньше 2 вольт. (По некоторым обстоятельствам микроконтроллер с дисплеем на фото не показаны).

Эксперимент №2
Для повышения шанса на успех я приобрел на радиорынке новые солнечные элементы номиналами 2 В, током 40 мА и 100 мА, китайского производства залитые оптической смолой. Для сравнения данные батареи в тени уже выдавали 1,8 вольт, при этом не большой ток заряда, но все же заметно лучше заряжающий ионистор.
Спаяв конструкцию уже с новой батареей, диодом шотки и конденсаторами я положил ее на подоконник для того, чтобы конденсатор зарядился.
Притом, что солнечный свет напрямую не попадал на батарею, уже через 10 минут конденсатор зарядился до 1,95 В. Взял датчик температуры, вынул из него батарею и подключил ионистор с солнечной батареей к контактам батарейного отсека.

В качестве какого прибора в автомобиле можно использовать ионистор

Фото 2.

Датчик температуры сразу же заработал и передал на метеостанцию комнатную температуру. Убедившись, что датчик работает, закрепил на него конденсатор с солнечной батареей и повесил на место.
Что же было дальше?
Все светлое время суток датчик исправно работал, но с наступлением темного времени суток, уже через час, датчик перестал передавать данные. Очевидно, что запасенного заряда не хватало даже на час работы датчика и потом выяснилось почему…

Эксперимент №3
Решил немного доработать конструкцию таким образом, чтобы ионистор (вернул сборку ионисторов 2 фарады) был полностью заряжен. Собрал батарею из трех элементов, получилось 6 вольт и ток 40 мА (при полном освещении солнцем). Данная батарея в тени уже давала до 3,7 В вместо предыдущей 1,8 В (фото 1) и ток заряда до 2 мА. Соответственно ионистор заряжаясь до 3,7 В и имел уже значительно больше запасенной энергии в сравнении с Экспериментом №2.

В качестве какого прибора в автомобиле можно использовать ионистор

Фото 3.

Все бы хорошо, но мы теперь имеем на выходе до 5,5 В, а датчик питается от 1,5 В. Необходим DCDC преобразователь, что в свою очередь вносит дополнительные потери. Тот преобразователь, который у меня был в наличии, потреблял порядка 30 мкА и на выходе давал 4,2 В. Пока мне не удалось найти нужный преобразователь, для того чтобы запитать датчик температуры уже от модернизированной конструкции. (Нужно будет подобрать преобразователь и повторить опыт).

О потерях энергии:
Выше упоминалось, что ионисторы имеют ток саморазряда, в данном случае у сборки 2 фарада он составлял 50 мкА, так же сюда добавляются потери в DCDC преобразователе порядка 4% (заявленная эффективность 96%) и его холостой ход 30 мкА. Если не брать во внимание потери на преобразование, мы уже имеем потребление порядка 80 мкА.
Отнестись к энергосбережению необходимо особо внимательно, потому как экспериментальным путем установлено, что ионистор емкостью 2 фарады заряженный до 5,5 В и разряженный до 2,5 В имеет так скажем «аккумуляторную» емкость 1 мА. Иначе говоря – потребляя 1 мА с ионистора в течении часа, мы его разрядим с 5,5 В до 2,5 В.

О скорости заряда прямым солнечным светом:
Ток, получаемый от солнечной батареи тем выше, чем лучше батарея освещена прямыми солнечными лучами. Соответственно скорость заряда ионистора увеличивается в разы.

В качестве какого прибора в автомобиле можно использовать ионистор

Фото 4.

Из показаний мультиметра видно (0.192 В, начальные показания), через 2 минуты конденсатор зарядился до 1,161 В, через 5 минут до 3,132 В и еще через 10 минут 5,029 В. В течении 17 минут ионистор был заряжен на 90%. Нужно отметить, что освещение солнечной батареи было неравномерным в течении всего времени и происходило через двойное оконное стекло и защитную пленку батареи.

Технический отчет по Эксперименту №3
Технические характеристики макета:
— Солнечная батарея 12 элементов, 6 В, ток 40 мА (при полной засветке солнцем), (в тени пасмурной погоды 3,7 В и ток 1 мА с нагрузкой на ионистор).
— Ионисторы соединены параллельно, суммарная емкость 2 Фарад, допустимое напряжение 5,5 В, ток саморазряда 50 мкА;
— Диод Шотки с падением прямого напряжения 0,3 В, используется для развязки по питанию солнечную батарею и ионистор.
— Размеры макета 55 х 85 мм (пластиковая карта VISA).
От данного макета удалось запитать:
Микроконтроллер с ЖК-дисплеем (ток потребления 500 мкА при 5,5 В, время работы без солнечной батареи, приблизительно 1,8 часа);
Датчик температуры, время работы световой день с солнечной батареей, потребление 6 мА в течении 2 секунд каждые 40 секунд;
Светодиод светился 60 сек при среднем токе 60 мА без солнечной батареи;
Так же был испробован DCDC преобразователь напряжения (для стабильного питания), с которым удалось получить 60 мА и 4 В, в течении 60 секунд (при заряде ионистора до 5,5 В, без солнечной батареи).
Полученные данные говорят о том, что ионисторы в данной конструкции имеют приблизительную емкость 1 мА (без подпитки от солнечной батареи с разрядом до 2,5 В).

Выводы:
Данная конструкция позволяет накапливать энергию в конденсаторах для беспрерывного питания микропотребляющих устройств. Накопленная емкость 1 мА на 2 фарады емкости конденсатора должно хватить для обеспечения работоспособности микропроцессора с низким потреблением в темное время суток в течение 10 часов. При этом суммарный ток потерь и потребления нагрузкой не должен превышать 100 мкА. Днем ионистор подзаряжается от солнечной батареи даже в тени и способен питать нагрузку в импульсном режиме током до 100 мА.

Отвечаем на вопрос в заголовке статьи — Может ли ионистор заменить аккумулятор?
– может заменить, но пока со значительными ограничениями по току потребления и режиму работы нагрузки.

Недостатки:

  • малая емкость запаса энергии (приблизительно 1 мА на каждые 2 Фарад емкости ионистора)
  • значительный ток саморазряда конденсаторов (ориентировочная потеря 20% емкости за сутки)
  • габариты конструкции определяются солнечной батареей и суммарной емкостью ионисторов.

Достоинства:

  • отсутствие изнашиваемых химических элементов (аккумуляторов)
  • диапазон рабочих температур от -40 до +60 градусов Цельсия
  • простота конструкции
  • не высокая стоимость

После всех проделанных экспериментов пришла идея модернизировать конструкцию следующим образом

В качестве какого прибора в автомобиле можно использовать ионистор

Фото 5.

С одной стороны платы располагаются солнечная батарея, с другой стороны сборка ионисторов и DCDC преобразователь.

Технические характеристики:

  • Солнечная батарея 12 элементов, 6 В, ток 60 мА (при полной засветке солнцем);
  • Ионисторы суммарная емкость 4; 6 или 16 Фарад, допустимое напряжение 5,5 В, суммарный ток саморазряда соответственно 120 140 (пока не известно) мкА;
  • Диод Шотки сдвоенный с падением прямого напряжения 0,15 В, используется для развязки по питанию солнечной батареи и ионистора;
  • Размеры макета: 55 х 85 мм (пластиковая карта VISA);
  • Расчетная емкость без подпитки от солнечных батарей при установке конденсаторов 4; 6 или 16 Фарад, составляет примерно 2 3 8 мА.

P. S. Если вы заметили опечатку, ошибку или неточность в расчетах — напишите нам личным сообщением, и мы оперативно все исправим.

Источник