Какая погрешность определяет класс точности прибора омметра

Погрешность. Классы точности средств измерений.

Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски… Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как «среднее квадратическое отклонение случайной составляющей погрешности» или «нормализованная автокорреляционная функция» или «характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений» и т. п. Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает.

Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

По числовой форме представления подразделяются:

  1. Абсолютная погрешность: Δ = Xд — Xизм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы.
    где Xд – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений;
    Xизм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ Xд) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ Xн) · 100, выражается в % от нормирующего значения.
    где Xн – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).
  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ностиФормулаФорма выражения, записиОбозначение класса точности
В докумен тацииНа сред стве изме рений
Абсолют наяΔ = Xд — XизмΔ = ±50 мг
Примеры:
Номинальная масса гири 1 кг ±50 мг
Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г
Класс точности: М1
Класс точности: средний III
Примечание:
на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов.
М1

Какая погрешность определяет класс точности прибора омметра

Относи тельнаяδ = (Δ ⁄ Xд) · 100δ = ±0,5
Пример:
Измеренное значение изб. давления с отн. погр.
1 бар ±0,5%
т.е. 1 бар ±5 мбар (абс. погр.)
Класс точности 0,5

Какая погрешность определяет класс точности прибора омметра

Приве дённая:
при равно мерной шкале
γ = (Δ ⁄ Xн) · 100γ = ±0,5
Пример:
Измеренное значение на датчике изб. давления, при шкале от 0 до 10 бар
1 бар (= 0,5 % от 10 бар)
т.е. 1 бар ±50 мбар (абс. погр.)
Класс точности весов 0,50,5
с сущес твенно неравно мерной шкалойγ = ±0,5
Прописывается в норм .док-ии на СИ для каждого диапазона измерения (шкалы) своё нормирующее значение
Класс точности 0,5

Какая погрешность определяет класс точности прибора омметра

Как определить погрешность комплекта приборов, в который входит первичный преобразователь, вторичный преобразователь (усилитель) и вторичный прибор. У каждого из элементов этого комплекта есть своя абсолютная, относительная или приведённая погрешность. И чтобы оценить, общую погрешность измерения, необходимо все погрешности привести к одному виду, а дальше посчитать по формуле:

Какая погрешность определяет класс точности прибора омметра

Дальше будет интересно, наверное, только метрологам и то, только начинающим. Теперь совсем немного вспомним о средних квадратических отклонениях (СКО). Зачем они нужны? Так как истинное значение выявить невозможно, то необходимо хотя бы наиболее точно приблизиться к нему или определить доверительный интервал, в котором истинное значение находится с большой долей вероятности. Для этого применяют различные статистические методы, приведём формулы наиболее распространённого. Например, Вы провели n количество измерений чего угодно и Вам необходимо определить доверительный интервал:

  1. Определяем среднее арифметическое отклонение:

    Какая погрешность определяет класс точности прибора омметра

    где n – количество отклонений

  2. Определяем среднее квадратическое отклонение (СКО) среднего арифметического:

    Какая погрешность определяет класс точности прибора омметра

  3. Рассчитываем случайную составляющую погрешности:

    Какая погрешность определяет класс точности прибора омметра

    где t – коэффициент Стьюдента, зависящий от числа степеней свободы
    Таблица 1.

    α =0,68α =0,95α =0,99
    ntα,nntα,nntα,n
    22,0212,7263,7
    31,334,339,9
    41,343,245,8
    51,252,854,6
    61,262,664,0
    71,172,473,7
    81,182,483,5
    91,192,393,4
    101,1102,3103,3
    151,1152,1153,0
    201,1202,1202,9
    301,1302,0302,8
    1001,01002,01002,6
  4. Определяем СКО систематической составляющей погрешности:

    Какая погрешность определяет класс точности прибора омметра

  5. Рассчитываем суммарное СКО:

    Какая погрешность определяет класс точности прибора омметра

  6. Определяем коэффициент, зависящий от соотношения случайной и систематической составляющей погрешности:

    Какая погрешность определяет класс точности прибора омметра

  7. Проводим оценку доверительных границ погрешности:

    Какая погрешность определяет класс точности прибора омметра

В последнее время всё чаще на слуху термин «неопределённость». Медленно, но верно и настойчиво его внедряют в отечественную метрологию. Это дань интеграции нашей экономики во всемирную, естественно необходимо адаптировать нормативную документацию к международным стандартам. Не буду тут «переливать из пустого в порожнее», это хорошо сделано в различных нормативных документах. Чисто моё мнение, «расширенная неопределённость измерений» = основная погрешность + дополнительная, которая учитывает все влияющие факторы.

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний по­веряемого прибора с показаниями более точного, образцового прибора при измерении ими од­ной и той же величины. Значение измеряемой величины, определенное по образцовому прибо­ру, принято считать действительным. Однако действительное значение отличается от истинно­го на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютной погрешностью измерительного прибора называют разность между его показанием и действительным значением измеряемой величины.

Относительной погрешностью называют отношение абсолютной погрешности к действительному зна­чению измеряемой величины, выраженное в относительных единицах или в процентах.

Приведенная погрешность – это отношение наибольшей абсолютной погрешности к верхнему пределу измерений прибора.

По значению приведенной погрешности измерительные приборы делят на группы по классу точности. Класс точности обобщенная характеристика измерительного прибора, определяющая пре­делы допустимых погрешностей. Для электроизмерительных приборов класс точности указывается в вида числа, равного максимальной допустимой приведенной погреш­ности (в %). Согласно ГОСТ 1845-59, электроизмерительные приборы делят на 8 классов по точности: 0,05; 0,1; 0,2 – образцовые приборы; 0,5; 1,0 – лабораторные; 1,5; 2,5; 4,0 – технические приборы. Об­разцовые приборы считаются более высокого класса точности по отношению к лабораторным и техническим приборам, а лабораторные – по отношению к техническим.

Определим по классу точности прибора его погрешности. Если прибор (например, вольтметр с верхним пределом измерений 150 В) имеет класс точности 1,0, то основная приведенная погрешность не превышает 1 %. Максимальная абсолютную по­грешность, которую может иметь прибор в любой точке шкалы не будет превышать

Какая погрешность определяет класс точности прибора омметра

Относительная же погрешность при этом зависит от измеряемого напряжения.

Если этим вольтметром можно измерять напряжение 10 В, то относительная погрешность может составить

Какая погрешность определяет класс точности прибора омметра

. Если же измерять напряжение 100 В, то относительная погрешность может составить

Из этого примера видно, что для повышения точности измерения прибор надо выбирать так, чтобы, во-первых, он имел более высокий класс точности, и чтобы, во-вторых, предел измерения был бли­зок к значению измеряемой величины. Это означает, что для получения возможно меньших относительных ошибок, надо добиваться достаточно большого отклонения стрелки (желательно, чтобы использовалась последняя треть шкалы).

С другой стороны, для того чтобы добиться большой точности при измерении прибором более низкого класса, необходимо выбрать прибор с наименьшим возможным диапазоном измерений.

Следует правильно формулировать предложение, в котором дана количественная оценка по­грешности. Например: «Измерение тока с абсолютной погрешностью до 1 мА», «Измерение то­ка с относительной погрешностью до 1 %. (Выражение «Измерение тока с точностью до 1 мА» неправильно).

Что означает класс точности измерительного прибора

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

Какая погрешность определяет класс точности прибора омметра

На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

Какая погрешность определяет класс точности прибора омметра

Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака «угол».

Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае

где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.

Источник