Меню

Измерительные величины скорости в физических приборах

Измеритель скорости. Виды и работа. Применение и особенности

Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.

Виды измерителей скорости

Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели.

Существуют следующие разновидности измерителей скорости:

Спидометр

Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.

Измерительные величины скорости в физических приборах

Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.

Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.

Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.

Радар

Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.

Измерительные величины скорости в физических приборах

Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.

Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.

Анемометр

Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.

Измерительные величины скорости в физических приборах

В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.

Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.

Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.

Хронограф

Хронограф – это универсальное оборудование, которое используется для различных целей. Одним из способов его применения является измерение скорости движения пули выпущенной из пневматического или огнестрельного оружия. Главные особенности таких устройств в том, что они дают точные показатели скорости движения мелких объектов. Такой измеритель скорости даст возможность снять показатели о характеристиках движения стрелы выпущенной из лука, болта из арбалета или камушка из рогатки.

Измерительные величины скорости в физических приборах

Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.

Дульный хронограф устанавливается на дуло пневматического или огнестрельного оружия. С его помощью удастся определить начальную скорость вылета пули. По этому показателю можно судить о мощности оружия и его пробиваемой силе на определенном расстоянии. Чтобы подключить хронограф к дулу оружия требуется наличие специального переходника. Для разных типов оружия переходник отличается, но сам измеритель скорости пули может использоваться практически всегда. Хронографы, которые применяются для пневматического оружия, имеют диапазон измерения до 350-400 м/с. Оборудование для огнестрельного оружия имеют значительно больший диапазон чувствительности.

Измерительные величины скорости в физических приборах

Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.

Измеритель скорости газового потока

Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.

Измерительные величины скорости в физических приборах

Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.

Скоростемер для воды

Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.

Таблица «Физические величины»
материал для подготовки к егэ (гиа) по физике (7 класс) на тему

Измерительные величины скорости в физических приборах

Таблица физических величин, изучаемых в 7 классе содержит: буквенное обозначение, формулу, единицы измерения, прибор для измерения величины.

Скачать:

Предварительный просмотр:

Физические величины 7 класс.

Нормальное атмосферное давление 760мм.рт.ст.= 101300 Па

По теме: методические разработки, презентации и конспекты

Измерительные величины скорости в физических приборах

Конспект урока с использованием ЭОР по теме «Физические величины. Измерение физических величин»

Конспект урока с использованием ЭОР по теме «Физические величины. Измерение физических величин».ЭОР с сайтов http://fcior.edu.ru и http://school-collection.edu.ru/.

Измерительные величины скорости в физических приборах

урок «Физические величины.Измерение физических величин» с использованием ЦОР.

Данный урок показыват как можно испольвать элементы ЦОР при объяснении,закреплении,самопроверки учащимися учебного материала,что повышает эффективность урока,познавательные интересы учащихся.

Случайные величины.Законы распределения случайных величин.

Данный материал поможет учителям.

Измерительные величины скорости в физических приборах

Урок по физике для 7 класса Тема: Физические величины. Измерение физических величин. Точность и погрешность измерений.

Тема: Измерение физических величин. Точность и погрешность и измерений.

Измерительные величины скорости в физических приборах

«Физические величины. Измерение физических величин. Точность и погрешность измерений»

презентация к уроку физики 7 класс на тему «Физические величины. Измерение физических величин. Точность и погрешность измерений».

Измерительные величины скорости в физических приборах

Презентация к уроку по физике на тему «Физические величины. Измерение физических величин».

Презентация по физике на тему «Физические величины, Измерение физических величин». Урок — новая тема для учащихся 7 класса. В начале урока для ребят предлагается небольшая самостоятельная работа на ус.

Измерительные величины скорости в физических приборах

Математика 5 класс — вычисление величины по дроби ото величины

Задание по математике для 5 класса на дроби.

Задание №1 ОГЭ по физике

Физические понятия, величины. Их единицы измерения и приборы для измерения.

Для решения задания № 1 требуется знание физ.величин и понимание физ.явлений и законов из разных разделов программы. Кроме того, необходимо знать, посредством каких приборов те или иные величины измеряются. Определения, разъясняющие это, перечень основных физ.величин, их единиц и измерительных приборов приведены в разделе теории.

Теория к заданию №1 ОГЭ по физике

Физические величины, явления, законы

Измерительные величины скорости в физических приборах

Физическая величина – это свойство класса явлений или типового физического объекта, имеющего единую качественную характеристику. Различают основные и производные физ.величины. Производными считаются величины, определяемые двумя или более основными. Примеры основных физ.величин: время, масса, длина, температура. Примеры производных физ.величин: скорость, сила, ускорение, объем, давление.

Под физическим явлением понимается процесс изменения существующего на данный момент (или в данной точке) положения либо состояния физ.системы. Примеры физ.явлений: диффузия, отражение света, испарение влаги, горение газа, электризация.

Физическим законом называется устойчивая взаимосвязь между физ.величинами, явлениями, состояниями тел, установленная эмпирически (опытным путем) и выраженная в виде математической формулы либо словесной формулировки. Примеры физ.законов: з-н Архимеда, з-ны Ома, з-ны Ньютона, з-н Бойля-Мариотта.

Единицы измерения физ.величин

Любая физ.величина характеризуется собственной единицей измерения. Ед.измерения позволяет определить ее количественное значение и соотнести его с проявлениями физ.величины в других объектах и процессах. Как правило, единицы измерения производных физ.величин представлены через единицы основных и других производных. Иногда это проявляется напрямую, отображаясь соотношением единиц величин, участвующих в их определении. Например, скорость выражается в

Измерительные величины скорости в физических приборах

, т.е. через определяющие ее перемещение и время. Во многих случаях производные величины имеют собственные – оригинальные – ед.измерения. Так, сила выражается в Ньютонах (Н); но при определении этой единицы всегда оговаривается, что:

Измерительные величины скорости в физических приборах

, т.е. выражается через единицы массы и ускорения.

Основные физ.величины и единицы их измерения (в СИ):

  • длина, перемещение, координата – метр (м),
  • скорость – метр в сек. (м/с),
  • ускорение – метр в сек.в квадрате (м/с 2 ),
  • время, период колебаний – секунда (с),
  • частота колебаний – герц (Гц),
  • масса – килограмм (кг),
  • сила – ньютон (Н),
  • импульс – килограмм-метр в сек. (кг·м/с),
  • работа (механическая, силы тока и т.д.), энергия, кол-во теплоты – джоуль (Дж),
  • мощность – ватт (Вт),
  • плотность вещества – килограмм на метр кубический (кг/м 3 ),
  • давление – паскаль (Па),
  • температура – кельвин (К), распространена единица «градус Цельсия» ( 0 С),
  • эл.заряд – кулон (Кл),
  • напряженность – вольт на метр (В/м),
  • сила тока – ампер (А),
  • потенциал, напряжение – вольт (В).

Приборы для измерения физ.величин

Они представляют собой устройства для определения количественных значения тех или иных физ.величин. Приборы могут быть различными по сложности своего устройства – от простейших (линейка, рычажные весы) до более или менее сложных (барометр, вольтметр). Приборы для измерения физ.величин в основном уникальны и могут использоваться для измерения единственной величины.

Основные измерительные приборы и величины, измеряемые ими:

  • спидометр – скорость,
  • динамометр – сила в механике,
  • термометр – температура,
  • манометр – давление газа или жидкости внутри сосуда,
  • барометр – атмосферное давление,
  • гигрометр – влажность воздуха,
  • ареометр – плотность веществ,
  • мензурка – объем жидкостей,
  • амперметр – сила тока,
  • электрометр – эл.потенциал,
  • вольтметр – эл.напряжение (разность потенциалов),
  • омметр – эл.сопротивление.

Физическое тело

Телом в физике считается материальный объект, отделенный конкретными собственными границами от других тел и характеризующийся а) конкретным объемом, б) постоянной массой, в) формой (обычно – простой). Это понятие используется для упрощенных математических расчетов с целью определения качественных и (или) количественных параметров процессов, в которых участвует данный объект. Примеры физ.тел: автомобиль, человек, Луна, здание.

Вектор

Вектором в физике называют одну из основных характеристик для физических величин, которая обозначает направление их движения. Векторными величинами являются скорость, сила, импульс, ускорение и др. Говоря, например, «вектор скорости», подразумевают, что для рассматриваемого физ.тела в данном случае важно не только то, насколько быстро или медленно оно движется, но и то, в какую сторону осуществляется это движение.

Разбор типовых вариантов заданий №1 ОГЭ по физике

Демонстрационный вариант 2018

Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца.

Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ А) физическая величина Б) единица физической величины В) прибор для измерения физической величиныПРИМЕРЫ 1) ньютон 2) инерция 3) масса 4) кристалл 5) весы
Алгоритм решения:
Решение:
  1. Ньютон. Это – единица измерения физ.величины «Сила». Следовательно, пример 1 должен быть отнесет в категорию Б.
  2. Инерция. Это – физ.явление в механике, свойство физ.тел. Физ.величиной инерция не является, и тем более не относится к категории единиц физ.величин или приборов.
  3. Масса. Это – одна из основных физ.величин в физике. Т.о., пример 3 относится к категории А.
  4. Кристалл. Это – физическое тело.
  5. Весы. Веся являются прибором для измерения масс физ.тел. Соответственно, пример 5 нужно вписать в таблицу для категории В.
  6. Итоговая таблица:
АБВ
315

Ответ: 315

Первый вариант (Камзеева, № 1)

Установите соответствие между физическими величинами (понятиями) и их определениями.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ (ПОНЯТИЯ) A) траектория Б) перемещение B) ускорениеОПРЕДЕЛЕНИЯ 1) физическая величина, характеризующая быстроту изменения скорости тела 2) тело, размеры которого меньше 1 мм 3) тело, размерами которого в данных условиях можно пренебречь 4) вектор, соединяющий начальное положение тела с последующим положением 5) линия, образованная точками, в которых тело побывало в процессе движения
Алгоритм решения:
  1. Выявляем формулировки из второй колонки («Определения»), которые заведомо неверны.
  2. Среди оставшихся – потенциально правильных – определений находим соответствующие формулировки для понятий, предложенных в первой колонке.
  3. Заполняем итоговую таблицу. Записываем ответ.
Решение:
  1. Все 3 приведенные физ.понятия характеризуют свойства тел, связанные с их возможностью движения, но не с описанием самих тел. Поэтому 2-е и 3-е определения из 2-й колонки здесь принципиально не подходят, т.к. описывают собственно тело.
  2. Оставшиеся 1-е, 4-е и 5-е определения распределим между понятиями из 1-й колонки. Понятию А «траектория», согласно определению этой физ.величины, соответствует определение 5, понятию Б – определение 4, понятию В – определение 1.
  3. Итоговая таблица:
АБВ
541

Ответ: 541

Второй вариант (Камзеева, № 10)

Установите соответствие между физическими величинами и формулами, по которым эти величины определяются.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ А) работа тока Б) электрическое сопротивление В) удельное электрическое сопротивлениеФОРМУЛЫ

  1. Измерительные величины скорости в физических приборах

  2. Измерительные величины скорости в физических приборах

  3. Измерительные величины скорости в физических приборах

  4. Измерительные величины скорости в физических приборах

  5. Измерительные величины скорости в физических приборах

Алгоритм решения:

1. Анализируем формулу 1. Выясняем, соответствует ли она какой-либо из физических величин из 1-й колонки.

2–5. Осуществляем аналогичный анализ для остальных формул.

6. Заполняем итоговую таблицу. Записываем ответ.

Решение:
  1. Формула 1, по сути, отображает з-н Ома для участка цепи и позволяет найти силу тока. Т.е. формула имеет смысл, однако не подходит ни для одной из 3-х приведенных физ.величин.
  2. Формула 2 – одна из основных для нахождения работы силы тока. Ее используют, когда неизвестна величина сопротивления проводника. Соответственно, она подходит для физ.величины А.
  3. Формула 3 – основа для нахождения удельного эл.сопротивления. Она выводится из формулы для сопротивления проводника через его длину и площадь поперечного сечения. Отсюда получаем, что формула 3 подходит для физ.величины В.
  4. Формула 4 – одна из основных для вычисления мощности тока. Но такой физ.величины в списке нет.
  5. Формула 5 является результатом преобразования ур-ния з-на Ома для участка цепи и часто используется для вычисления сопротивления. Т.о., она подходит для физ.величины Б.
  6. Итоговая таблица:
АБВ
253

Третий вариант (Камзеева, № 12)

Установите соответствие между приборами и физическими величинами, которые они измеряют.

ПРИБОРЫ А) ареометр Б) мензурка В) манометрФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

  1. плотность жидкости
  2. давление внутри жидкости
  3. температура жидкости
  4. объем жидкости
  5. масса жидкости
Алгоритм решения:

1. Анализируем физ.величину 1 (во 2-й колонке) с точки зрения подбора устройства для ее измерения. Если находим такой в 1-й колонке, фиксируем пару значений (буква–цифра) для итоговой таблицы.

2–5. Производим аналогичные действия для остальных физ.величин.

6. Заполняем итоговую таблицу. Записываем ответ.

Источник