Гос система приборов это

Государственная система промышленных приборов и средств автоматизации

Гос система приборов это

Гос система приборов это

Гос система приборов это

Гос система приборов это

Гос система приборов это

Гос система приборов это

Государственная система промышленных приборов и средств автоматизации (ГСП) — это совокупность унифицированных блоков, приборов и устройств для получения, обработки и ис­пользования информации. ГСП имеет единые параметры вход­ных и выходных сигналов, а также унифицированные габарит­ные присоединительные размеры. Она построена по блочно-модульному принципу, что позволяет совершенствовать системы автоматического управления путем замены отдельных блоков и элементов.

По принадлежности к ГСП приборы и устройства подразде­ляются на три группы:

  • системные, отвечающие всем без исключения требованиям ГСП;
  • локального применения, по назначению, техническим и эксплуатационным характеристикам и конструктивным особенностям отвечающие требованиям ГСП, но не предназначенные для совместной работы в системах автоматического контроля, регулирования и управления с другими изделиями ГСП и не имеющие с ними сопряжения по информационной связи и конструктивному оформлению;
  • вспомогательные, предназначенные специально для исследования объектов автоматизации или испытаний и проверки изделий, входящих в ГСП.

Измерительные преобразователи, приборы и устройства в соответствии с ГОСТ 12997—76 «ГСП. Общие технические тре­бования» классифицируются следующим образом: по выполняе­мым функциям; по виду энергии носителя сигналов; по метроло­гическим свойствам и по защищенности от воздействия окру­жающей среды.

На схеме 1 приведена классификация изделий ГСП. Рас­смотрим более подробно классификацию изделий ГСП по выполняемым функциям.

Схема 1. Классификация изделий Государственной системы промышленных приборов и средств автоматизации

Устройства ГСП
по выполняе­мым функциям по виду энергии носителя сигналов по метрологи­ческим свойст­вам _ позащищенно­сти от воздей­ствия окружа­ющей среды
средства полу­чения инфор­мации электри­ческие средства изме­рения пылезащищенные
средства пере­дачи, ввода или вывода инфор­мации пневма­тичес­кие изделия, не яв­ляющиеся средствами из­мерения (сред­ства автомати­зации) водозащищен­ные
средства преобразования, об­работки или хранения ин­формации гидрав­личес­кие _-_______ взрывобезопасные
средства ис-пользования информации комби­нирован­ные защищенные от агрессивной среды

Гос система приборов это

К устройствам для получения информации о состоянии тех­нологического процесса относятся первичные измерительные преобразователи (чувствительные элементы), воспринимающие изменение технологических параметров (температура, давле­ние, уровень, расход вещества, вязкость, плотность и др.) и пре­образующие его в унифицированный выходной сигнал, пере­даваемый по каналам связи. В группу устройств приема и пре­образования информации входят устройства дистанционной и телемеханической передачи сигналов. В состав группы устройств для преобразования, хранения и обработки информации вклю­чены функциональные и логические блоки, регуляторы, управ­ляющие вычислительные машины и комплексы, а также пока­зывающие и самопишущие измерительные приборы и устройст­ва отображения информации (дисплеи, табло, мнемонические схемы). К устройствам, использующим информацию для управления технологическим процессом, относятся исполнительные устройства с электрическим, пневматическим и гидравлическим приводом.

Устройства ГСП по виду используемой энергии делят на электрические аналоговые, электрические дискретные, пневма­тические, гидравлические и устройства, работающие без источ­ников вспомогательной энергии.

Электрические аналоговые устройства ГСП имеют стандарт­ный диапазон значений силы тока 0—5 мА, 0—20, 4-20 мА и напряжений постоянного тока 0—10 мВ, 0—1 В, 0—5 В и 0—10 В (ГОСТ 14853—76 и ГОСТ 10938—75). Электрические дискретные устройства ГСП характеризуются диапазоном частоты переменного тока или частоты импульсов. Частотный диапазон О—8000 Гц. Параметры импульсных сигналов: для амплитуд сигналов 0,6—220 В, для токов 1—500 мА. Эти сигналы используются в управляющих вычислительных комплексах.

В силу специфических условий отрасли, а именно повышенных влажности, температуры, содержания паров солей в атмосфере цехов, получили распространение пневматиче­ские устройства ГСП ввиду простоты эксплуатации и надежности в работе.

Номинальное значение давления питания для приборов и устройств получения информации о состоянии процесса, преобразования, обработки, хранения информации—140 кПа (ГОСТ 13053—76). Допустимое отклонение давления питания составляет ±10% от номинального. Промышленность выпускает элементы УСЭППА (универсальная система элементов промышленной пневмоавтоматики) и систему модулей струйной техники (СМСТ), которые применяют при разработке систем автоматического управления технологическими процессами. Широкая номенклатура изделий пневматической ветви ГСП позволяет создавать различные по сложности системы автоматического управления.

Гидравлические устройства ГСП характеризуются диапазоном изменения давления рабочей жидкости (веретенное, турбинное, трансформаторное масло или вода) от 1 до 6,4 МПа. В промышленности они нашли значительное распространение.

Устройства ГСП, работающие без источников вспомогательной энергии, характеризуются тем, что они используют энергию той среды, для измерения и регулирования параметров которой устройства предназначены. Наибольшее распространение получили регуляторы прямого действия температуры, давления и уровня.

Для автоматических измерительных приборов установлены следующие классы точности: 0,25; 0,5; 1,0 и 1,5.

В зависимости от числа точек измерения приборы выпускаются одноточечные и многоточечные. С учетом внешних факторов, влияющих на работу приборов, их изготовляют в нормальном исполнении, а также в герметическом исполнении для работы при температуре окружающего воздуха от —10 С С до 45 °С и относительной влажности до 98%.

Внедрение ГСП не предусматривает повсеместного полного перехода на выпуск приборов и средств автоматизации, на выходе только унифицированные сигналы. Широко приборы, в которых для передачи контрольной информации используются так называемые естественные сигналы, представляющие собой изменение различных параметров (перемещение, электрический ток и напряжение, давление воды, воздуха и т.п.). В зависимости от изменения физической величины. Естественные сигналы передаются в том виде, в котором они получены с помощью чувствительного элемента измерительного прибора или устройства, без дополнительных преобразований.

Перевод сигналов из аналоговой формы в дискретную, и наоборот, а также изменение несущих величин осуществляется функциональными преобразователями, которые обеспечивают взаимосвязь устройств различных ветвей ГСП в единых измерительных или автоматических системах. Для обеспечения совместной работы приборов с естественны­ми сигналами с приборами ГСП, а также друг с другом служат специальные нормирующие преобразователи, входящие в систему ГСП и приводящие естественные сигналы к уровню и виду нор­мализованных стандартных сигналов ГСП.

В качестве базовой системы логических элементов электрических ветвей ГСП широко используются комплексы унифицированных логических элементов. Типовой логический (функциональный) модуль выполняется в виде кассеты, состоящей из печатной платы, на которой располагаются отдельные компоненты схемы. В пневматической ветви ГСП применяется система пневматических элементов УСЭППА, а также отдельные элементы системы модулей струйной техники (СМСТ).

ГСП охватывает все устройства, обеспечивающие формирование сигналов — носителей информации о значениях параметров объекта управления: первичные преобразователи (датчики); нормирование сигналов — вторичные преобразователи, «нормализаторы», функциональные преобразователи и процессоры; обеспечивающие коммутацию, аналого-цифровое и цифро-аналоговое преобразование — коммутаторы, АЦП и ЦАП; реализацию необходимого воздействия на объект — исполнительные механизмы, Система стандартов предусматривает общие технические требования к входным и выходным сигналам, правилам информационного сопряжения и конструктивному исполнению.

Таким образом, группы функциональных устройств образуют систему средств автоматизации, охватывающую все звенья формирования, передачи, обработки и использования информации, из которых могут создаваться разнообразные информационные системы, системы контроля, регулирования и управления.

Практически все разрабатываемые технические средства создаются в рамках унифицированных агрегатных комплексов. В настоящее время большее развитие получили агрегатные комплексы средств вычислительной техники (АСВТ) и средств электроизмерительной техники (АСЭТ).

ГОСУДАРСТВЕННАЯ СИСТЕМА ПРОМЫШЛЕННЫХ ПРИБОРОВ И СРЕДСТВ АВТОМАТИЗАЦИИ

ГСП – это государственная система приборов и средств автоматизации представляющая собой набор рядов унифицированных приборов и устройств измерения техники, автоматики, телемеханики с единой нормативной базой, включающей унификацию информативных сигналов, метрологических, надёжностных, энергетических и других характеристик, необходимого математического обеспечения, конструктивного исполнения.

В основу построения ГСП положены следующие принципы: выделение устройства по функциональным признакам, минимизация номенклатуры изделий, блочно-модульное построение технических средств, агрегатное построение систем управления, совместимость приборов и устройств.

По функциональному признаку все изделия ГСП делятся на четыре группы: устройства получения информации о состоянии процесса; устройства приема, преобразования и передачи информации по каналам связи; устройства преобразования, хранения, обработки информации и формирование команд управления; устройства использования командной информации для воздействия на объект управления.

СИ входят в число устройств входят в число первой и второй групп перечисленных групп и представляют собой первичные, промежуточные, масштабирующие (нормирующие) измерительные преобразователи, измерительные приборы и системы.

В зависимости от рода используемой энергии СИ и вспомогательные устройства ГСП подразделяют на четыре самостоятельные ветви: электрическую, пневматическую, гидравлическую и не использующей вспомогательной энергии. Все средства измерений и устройства электрической, пневматической и гидравлической ветви имеют унифицированные входные и выходные сигналы, перечень которых приведен в таблице:

Таблица.8.Основные виды унифицированных входных сигналов ГСП.

Вид сигнала Физическая величина Параметры сигнала
Электрический Постоянный ток 0-5, 0-20, -5-0-5, 4-20 мА
Постоянное напряжение 0-10, 0-20 –10-0-10 мВ; 0-10, 0-1 –1-0-1 В
Переменное напряжение 0-2, -1-0-1 В
Частота 2-8, 2-4 кГц
Пневматический Давление 0,2-1 кгс/см*см
Гидравлический » 0,1-6,4 МПа

Связь электрических, пневматических и гидравлических устройств осуществляется с помощью соответствующих преобразователей сигналов. Этим обеспечивается создание комбинированных средств ГСП. Средства ГСП строятся из блоков и модулей.

Блочно-модульный принцип построения средств ГСП обеспечивает возможность создания различных функционально сложных устройств из ограниченного числа более простых унифицированных блоков и модулей путем их наращивания и стыковки. Это позволяет создавать новые СИ и автоматизации из уже существующего набора узлов и блоков, что дает существенный экономический эффект.

ИУ и системы составляют самую многочисленную группу изделий ГСП, составляющую более половины номенклатуры промышленных изделий ГСП. Они обеспечивают получение измерительной информации о физических величинах (параметрах), характеризующих технологические процессы, свойства и качество продукции.

Классификация ИУ ГСП, учитывающая вид входных и выходных сигналов, приведена на рисунке. Под «естественным» входным сигналом в приведенной классификации понимают выходную физическую величину первичного ИП, полученную однократным простым («естественным») преобразованием измеряемой величины и не соответствующую по параметрам унифицированным сигналам. При этом под простым преобразованием понимают только преобразование, используемым для измерения физическим явлением. Несмотря на большое разнообразие величин, виды естественных выходных сигналов ГСП удается ограничить десятью, приведенными на рисунке.

Техническая основа ГСП. Для преобразования естественного выходного сигнала в унифицированный в ГСП используются нормирующие преобразователи. В ГСП, несмотря на значительное разнообразие измеряемых величин и используемых для этого принципов измерений, применяются четыре структурные схемы измерительных устройств, а именно: схема прямого однократного преобразования, схема управляющего преобразования (часто называется компенсационной), схема последовательного прямого преобразования, схема прямого дифференциального преобразования.

Нормирование метрологических характеристик СИ ГСП осуществляется по группам, выделенным в зависимости от функционального назначения.

Средства ГСП, служащие для технологических измерений, в основном являются аналоговыми и имеют малую случайную составляющую погрешности. Поэтому из метрологические характеристики формируются комплексами, включающими обычно: номинальную функцию преобразования, предел допускаемой основной погрешности, предел допускаемой вариации, динамическую характеристику, номинальное значение входного импеданса, номинальное значение выходного импеданса (для измерительных преобразователей), предел допускаемой дополнительной погрешности (для некоторых измерительных приборов).

В ГСП предусмотрено несколько видов конструктивного исполнения СИ: нормальное (обычное), пыле-, брызго- и взрывозащитное.

Гос система приборов это

Рисунок. 9. Классификация СИ ГСП по входным и выходным сигналам.

Измерительные устройства состоят из некоторого числа элементов (составных частей), предназначенных для выполнения таких, функций, как: преобразование поступающего сигнала по форме или виду энергии, успокоение колебаний, защита от помехонесущих полей, коммутация цепей, представление информации и т.п. к элементам измерительных устройств относят: опоры, направляющие, пружины, магниты, контакты, множительно-передаточные механизмы и т.п.

Преобразовательный элемент – элемент СИ, в котором происходит одно из ряда последовательных преобразований величины;

Измерительная цепь – совокупность преобразовательных элементов Си, обеспечивающая осуществление всех преобразований сигнала измерительной информации;

Чувствительный элемент – первый в измерительной цепи преобразовательный элемент, находящийся под непосредственны воздействием измеряемой величины;

Гос система приборов это

Измерительный механизм – часть конструкции Си, состоящая из элементов, взаимодействие которых вызывает из взаимное перемещение

Отсчетное устройство – часть конструкции Си, предназначенное для регистрации показаний.

Регистрирующее устройство – часть регистрирующего измерительного прибора, предназначенная для регистрации показаний.

На рисунке ниже приведены схемы измерительных устройств прямого действия (Рис. 10)(прямого преобразования) и сравнения (Рис. 11)(уравновешивающего или компенсационного преобразования).

Гос система приборов это

Гос система приборов это

Рис. 10 Структурные схемы СИ прямого действия.

Гос система приборов это

Гос система приборов это

Рис. 11. Структурные схемы СИ сравнения.

Работа этих типов приборов. На первом рисунке измеряемая физическая величина Х поступает в чувствительный элемент 1, где преобразуется в другую величину, удобную для дальнейшего использования (ток, напряжение, давление, перемещение, сила), и поступает на промежуточный преобразовательный элемент 2, который обычно либо усиливает поступающий сигнал, либо преобразует его по форме. (Элемент 2 может отсутствовать). Выходной сигнал элемента 2 поступает к измерительному механизму 3, перемещение элементов которого определяется с помощью отсчетного устройства 4. Выходной сигнал Y (показание), формируемый измерительным прибором, может быть воспринят органами чувств человека.

Показаниями называют значение величины, определяемое по счетному устройству и выраженное в принятых единицах этой величины. Отсчетное устройство представляет собой цифровое табло или, в подавляющем большинстве случаев, шкалу с указателем. Для шкальных от счетных устройств принято использовать ряд понятий, сущность большинства, из которых легко установить по рисунку ниже.

Схема измерительного прибора, основанного на методе уравновешивающего преобразования, показана на 3-м рисунке выше. Отличительной особенностью таких приборов является наличие отрицательной обратной связи. Здесь сигнал Z, возникающий на выходе чувствительного элемента, поступает на преобразовательный элемент 5, который способен осуществлять сравнение двух величин (элемент сравнения, ком парирующий элемент), поступающих на его вход. Кроме величины Z на выход элемента 5 подается величина с противоположным знаком Zур (уравновешивающий сигнал), которая формируется на выходе обратного преобразовательного элемента 6. На выходе элемента 5 формируется сигнал, пропорциональный разности значения величин Z и Zур. Этот сигнал поступает в промежуточный преобразовательный элемент 2, выходной сигнал которого поступает одновременно на измерительный механизм 3 и на вход обратного преобразовательного элемента 6. В зависимости от типа промежуточного преобразовательного элемента 2 при каждом значении измеряемого параметра и соответствующем ему значении Z разность Z-Zур, поступающая на вход элемента 5, может сводиться к нулю или иметь некоторое малое значение, пропорциональное измеряемой величине.

На остальных рисунках приведены структурные схемы измерительных преобразователей, основанных соответственно на методах прямого и уравновешивающего преобразователя. В этих схемах отсутствует измерительный механизм и отсчетное устройство. Этим определяется тот факт, что сигнал измерительных преобразователей имеет форму, недоступную для восприятия человеком. В то же время в составе измерительных преобразователей, как правило, имеется оконченный преобразовательный элемент 7, который формирует выходной сигнал (усиливает его по мощности, преобразует в частоту колебаний и т.д.) таким образом, что его можно передавать на расстояние, хранить и обрабатывать.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник