Германий кремний в полупроводниковых приборах

Полупроводниковые материалы — германий и кремний

Германий кремний в полупроводниковых приборах

Полупроводники составляют обширную область материалов, отличающихся друг от друга большим многообразием электрических и физических свойств, а также большим многообразием химического состава, что и определяет различные назначения при их техническом использовании.

По химической природе современные полупроводниковые материалы можно разделить на следующие четыре главные группы:

1. Кристаллические полупроводниковые материалы, построенные из атомов или молекул одного элемента. Такими материалами являются широко используемые в данное время германий, кремний , селен , бор, карбид кремния и др.

2. Окисные кристаллические полупроводниковые материалы, т. е. материалы из окислов металлов. Главные из них: закись меди, окись цинка, окись кадмия, двуокись титана, окись никеля и др. В эту же группу входят материалы, изготовляемые на основе титаната бария, стронция, цинка, и другие неорганические соединения с различными малыми добавками.

3. Кристаллические полупроводниковые материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева . Примерами таких материалов являются антимониды индия, галлия и алюминия, т. е. соединения сурьмы с индием, галлием и алюминием. Они получили наименование интерметаллических соединений.

4. Кристаллические полупроводниковые материалы на основе соединений серы, селена и теллура с одной стороны и меди, кадмия и свин ц а с другой. Такие соединения называются соответственно: сульфидами, селенидами и теллуридами.

Германий кремний в полупроводниковых приборах

Все полупроводниковые материалы, как уже говорилось, могут быть распределены по кристаллической структуре на две группы. Одни материалы изготовляются в виде больших одиночных кристаллов (монокристаллов), из которых вырезают по определенным кристаллическим направлениям пластинки различных размеров для использования их в выпрямителях, усилителях, фотоэлементах.

Такие материалы составляют группу монокристаллических полупроводников . Наиболее распространенными монокристаллическими материалами являются германий и кремний. Р азработаны методы изготовления монокристаллов и из карбида кремния , монокристаллы из интерметаллических соединений.

Другие полупроводниковые материалы представляют собой смесь множества малых кристалликов, беспорядочно спаянных друг с другом. Такие материалы называются поликристаллическими . Представителями поликристаллических полупроводниковых материалов являются селен и карбид кремния, а также материалы, изготовляемые из различных окислов методами керамической технологии.

Рассмотрим широко применяемые полупроводниковые материалы .

Германий — элемент четвертой группы периодической системы элементов Менделеева. Германий имеет ярко-серебристый цвет. Температура плавления германия 937,2° С. В природе он встречается часто, но в весьма малых количествах. Присутствие германия обнаружено в цинковых рудах и в золах разных углей. Основным источником получения германия является зола угле й и отходы металлургических заводов.

Германий кремний в полупроводниковых приборах

Полученный в результате ряда химических операций слиток германия еще не представляет собой вещества, пригодного для изготовления из него полупроводниковых приборов. Он содержит нерастворимые примеси, не является еще монокристаллом и в него не введена легирующая примесь, обусловливающая необходимый вид электропроводности.

Для очистки слитка от нерастворимых примесей широко применяется метод зонной плавки . Этим методом могут быть удалены лишь те примеси, которые различно растворяются в данном твердом полупроводнике и в его расплаве.

Германий обладает большой твердостью, но чрезвычайно хрупок и раскалывается на мелкие куски при ударах. Однако при помощи алмазной пилы или других устройств его можно распилить на тонкие пластинки. Отечественной промышленностью изготовляется легированный германий с электронной электропроводностью различных марок с удельным сопротивлением от 0,003 до 45 ом х см и германий легированный с дырочной электропроводностью с удельным сопротивлением от 0,4 до 5,5 ом х см и выше. Удельное же сопротивление чистого германия при комнатной температуре ρ = 60 ом х см.

Германий как полупроводниковый материал широко используется не только для диодов и триодов , из него изготовляются мощные выпрямители на большие токи, различные датчики, применяемые для измерения напряженности магнитного поля, термометры сопротивления для низких температур и др.

Кремний широко распространен в природе. Он, как и германий, является элементом четвертой группы системы элементов Менделеева и имеет такую же кристаллическую (кубическую) структуру. Полированный кремний приобретает металлический блеск стали.

Кремний не встречается в природе в свободном состоянии, хотя и является вторым по распространенности элементом на Земле, составляя основу кварца и других минералов. Кремний может быть выделен в элементарном виде при высокотемпературном восстановлении Si02 углеродом. При этом чистота кремния после кислотной обработки составляет

99,8%, и для полупроводниковых приборов приборов в таком виде он не применяется.

Кремний высокой чистоты получают из предварительно хорошо очищенных его летучих соединений (галогенидов, силанов) либо при их высокотемпературном восстановлении цинком или водородом, либо при их термическом разложении. Выделяющийся при реакции кремний осаждается на стенках реакционной камеры или на специальном теле нагрева — чаще всего на прутке из высокочистого кремния.

Германий кремний в полупроводниковых приборах

Как и германий, кремний обладает хрупкостью. Его температура плавления значительно выше, чем у германия: 1423° С. Удельное сопротивление чистого кремния при комнатной температуре ρ = 3 х 10 5 ом-см.

Так как температура плавления кремния значительно выше, чем у германия, то тигель из графита заменяют кварцевым, так как графит при высокой температуре может реагировать с кремнием и образовывать карбид кремния. Кроме того, в расплавленный кремний могут попасть из графита загрязняющие примеси.

Промышленностью выпускается полупроводниковый легированный кремний с электронной электропроводностью (различных марок) с удельным сопротивлением от 0,01 до 35 ом х см и с дырочной электропроводностью тоже различных марок с удельным сопротивлением от 0,05 до 35 ом х см.

Кремний, как и германий, широко применяется для изготовления многочисленных полупроводниковых приборов. В кремниевом выпрямителе достигаются более высокие обратные напряжения и рабочая температура (130 — 180°С), чем в германиевых выпрямителях (80°С). Из кремния изготовляют точечные и плоскостные диоды и триоды, фотоэлементы и другие полупроводниковые приборы.

Германий кремний в полупроводниковых приборах

На рис. 3 показаны зависимости величин удельного сопротивления германия и кремния обоих типов от концентрации легирующих примесей в них.

Германий кремний в полупроводниковых приборах

Рис. 3. Влияние концентрации примесей на величину удельного сопротивления германия и кремния при комнатной температуре: 1 — кремний, 2 — германий

Кривые на рисунке показывают, что легирующие примеси оказывают огромное влияние на величину удельного сопротивления: у германия оно изменяется о г величины собственного сопротивления 60 ом х см до 10 -4 ом х см, т. е. в 5 х 10 5 раз, а у кремния с 3 х 10 3 до 10 -4 ом х см, т. е. в 3 х 10 9 раз.

В качестве материала для изготовления нелинейных сопротивлений особенно широкое применение получил поликристаллический материал — карбид кремния .

Германий кремний в полупроводниковых приборах

Из карбида кремния изготовляют вентильные разрядники для линий электропередачи — устройства, защищающие линию электропередачи от перенапряжений. В них диски из нелинейного полупроводника (карбида кремния) пропускают ток на землю под действием волн перенапряжений, возникающих в линии. В результате этого восстанавливается нормальная работа линии. При рабочем же напряжении линии сопротивления этих дисков возрастают и ток утечки с линии на землю прекращается.

Карбид кремния получают искусственно — путем тепловой обработки смеси кварцевого песка с углем при высокой температуре (2000°С).

В зависимости от введенных легирующих примесей образуются два основных вида карбида кремния: зеленый и черный. Они отличаются друг, от друга по типу электропроводности, а именно: зеленый карбид кремния обкидает электропроводностью n -типа, а черный — электропроводностью р-типа.

Для вентильных разрядников из карбида кремния изготовляются диски диаметром от 55 до 150 мм и высотой от 20 до 60 мм. В вентильном разряднике диски из карбида кремния соединяются последовательно друг с другом и с искровыми промежутками. Система, состоящая из дисков и искровых промежутков, сжимается спиральной пружиной. С помощью болта разрядник присоединяется к проводу линии электропередачи, а c другой стороны разрядник соединяется проводом с землей. Все детали разрядника помещены в фарфоровый корпус.

При нормальном напряжении на линии передачи ток с линии вентиль не пропускает. При повышенных же напряжениях (перенапряжениях), создаваемых атмосферным электричеством, или внутренних перенапряжениях искровые промежутки пробиваются и диски вентиля окажутся под высоким напряжением.

Сопротивление их резко упадет, что обеспечит утечку тока с линии на землю. Прошедший большой ток снизит напряжение до нормального и в дисках вентиля сопротивление возрастет. Вентиль окажется запертым, т. е. рабочий ток линии им пропускаться не будет.

Карбид кремния находит еще применение в полупроводниковых выпрямителях, работающих при больших рабочих температурах (до 500°С).

Полупроводники. Часть I. Применение в электронике

Начало кремниевого века

В далеком 1947 году, в недрах лабораторий телефонной компании Bell «родился» первый в мире транзистор – полупроводниковый усилительный элемент. Событие ознаменовало собой переход электроники из громоздких вакуумных труб на более компактные и экономичные полупроводники. Начался новый виток цивилизации, получивший название «кремниевый век».

Полупроводниковые приборы и их классификация.

В современной электронике на основе полупроводников производят активные элементы. То есть те, которые способны менять свои электрические характеристики в зависимости от подаваемого на них напряжения. Скажем, тот же транзистор является активным элементом, поскольку его значение внутреннего сопротивления будет меняться в зависимости от разных условий в электронной цепи. А вот, например обычный резистор относиться к категории пассивных элементов, так как его сопротивление будет всегда одинаковым. К пассивным электронным компонентам относятся также конденсаторы и катушки. Их создают из других материалов.

Фундаментальными активными элементами являются транзисторы и диоды. Другие полупроводниковые приборы, такие как варикапы, тиристоры и симисторы — это модификации и тех же транзисторов и диодов. Приборы с одним элементом называются дискретными. Соединив множество полупроводниковых элементов на одном кристалле, получают интегральную схему. Например, процессор и память компьютера являются интегральными схемами, состоящими из сотен миллионов транзисторов.

Германий кремний в полупроводниковых приборах

Германий VS Кремний

Самыми распространенными полупроводниками в производстве электронных компонентов являются германий (Ge) и кремний (Si). На заре полупроводниковой эпохи предпочитали использовать германий. По сравнению с кремнием, у него более низкое напряжение отпирания pn-перехода (0.1V — 0.3V против 0.6V — 0.7V). Это делает германий более экономичным в плане энергозатрат.

Кремний лучше сохраняет стабильность работы на высоких температурах и превосходит германий по частотным характеристикам. К тому же запасы Si на планете практически безграничны, а технология его получения и очистки значительно дешевле, чем Ge, довольно редкого в природе элемента. Все это привело к неизбежной и быстрой замене германиевых полупроводников на кремниевые. Первый транзистор на основе этого материала появился уже в 1954 году.

Полупроводники в процессорах. Закат эпохи кремния

В таких передовых областях, как разработка и производство процессоров, где размер и скорость полупроводниковых элементов играют решающую роль, развитие технологий использования кремния практически подошло к пределу своих возможностей. Улучшение производительности интегральных схем, достигающееся путем наращивания рабочей тактовой частоты и увеличения количества транзисторов, при дальнейшем использовании Si становиться все более сложной и дорогостоящей задачей.

По мере повышения скорости переключения транзисторов, их тепловыделение усиливается по экспоненте. Это остановило в 2005 году максимальную тактовую частоту процессоров где-то в районе 3 ГГц и заставило разработчиков перейти на стратегию «многоядерности».

Количество полупроводниковых элементов в одном чипе увеличивается путем уменьшения их физических размеров – переход на более тонкий технологический процесс. Каждый такой шаг означает снижение линейных размеров транзистора примерно в 1,4 раза и площади примерно в 2 раза. Всем известный Intel на данный момент (2011 год) владеет технологией в 32 нм при которой длина канала транзистора составляет 20 нм. Переход на более тонкий тех. процесс осуществляется этой компанией примерно каждые 2 года.

Быстродействие транзисторов по мере их уменьшения растет, но уже не повышается тактовая частота ядра процессора, как было до 90 нм тех. процесса. Это оставляет дальнейшее развитие кремниевых технологий малоперспективным.

Будущее за графеном?

Германий кремний в полупроводниковых приборах

Основной претендент на смену кремнию, по мнению многих экспертов, это графен. Этот новый полупроводниковый материал, открытый в 2004 году, является особой формой углерода (C).

Сейчас разрабатывается транзистор на базе графена, который может работать в трех различных режимах. Для аналогичной задачи в кремниевом чипе, потребовалось бы три отдельных полупроводниковых транзистора. Это позволит создавать интегральные схемы из меньшего количества транзисторов, которые будут выполнять те же функции, что и их кремниевые аналоги.

Еще одним важным преимуществом графеновых транзисторов является их способность работать на высоких частотах. Как заявляют некоторые ученые специалисты, эти частоты могут достигать 500-1000 ГГц.

Однако многообещающие технологии на базе графена пока еще находятся на стадии исследований и разработок. Время покажет, сколько они еще таят в себе подводных камней. Ну, а кремний все еще остается рабочей лошадкой в современной электронике, и не спешит сдавать позиции.

ССЫЛКИ ПО ТЕМЕ:

Полупроводники. Часть III. Типы проводимости полупроводников.

Полупроводники. Часть II. Строение атома и электоропроводность.

КОММЕНТАРИИ:

Автору данного ресурса огромная благодарность за содержательный и наглядный материал статей. Думаю многие, посещавшие ваш сайт, со мной согласятся — неопытному человеку намного проще и понятнее постигать знания имея под рукой подробные и понятные иллюстрации. Сайт мне очень понравился и был весьма полезен!

Поддерживаю предыдущего автора. Благодарю за доступное изложение материала.

Спасибо за теплые слова. Буду стараться дальше )

ну бля ребят как мок нахуй

Автор, исправь текст и нагни раком своего учителя по русскому языку!

1) На заре полупроводниковой техники применяли жёлтый цинкит — природый полупроводник, а не германий. Потом пришли на смену окись меди и селен. Так что германий — это не заря — так как им занялись уже имея в багаже развитую зонную теорию и общие представления о роли примесей.

2) В далёком 1928 году Лосев припаял «хороший» кристалл прироного цинкита к монете и прижал к нему две стальные иглы — и получил первый «трёхэлектродный кристадин», первый на планете транзистор. Тогдаже он изучил многоэмиттерные и многоколлекторные транзисторы, но в своей публикации через год упомянул лишь двух- и трёхэлектродные кристадины. Потом в ходе исследования цинкитных кристадинов впервые сформулировал зонную теорию, и пришёл к выводу что технологически доступный полупроводник с воспроизводимыми свойствами должен быть кристаллическим, элементарным, легкоплавким, узкозонным — чем и инициировал исследование серого селена и серого олова — ближайшего родственника германия. А в компании Белл создали лишь первый на планете транзистор с воспроизводимыми параметрами.

3) Полупроводниковая технология графена похоже вряд ли будет реализована вообще, ввиду его крайней нетехнологичности, роднящей его с цинкитом. Скорее всего кремний будет вытеснен арсенидом галлия, и этот процесс идёт уже сегодня.

очень хорошо написано спосибо огромное

спасибо всем я хочу чтобы вы тоже делали ставки на футбол-на вершине победы

Замечательный материал, все понятно и доступно, спасибо!

Источник