Газоразрядный счетчик устройство прибора

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ГАЗОРАЗРЯДНОГО СЧЕТЧИКА

Газоразрядный счетчик устройство прибора

Газоразрядный счетчик устройство прибора

Газоразрядный счетчик устройство прибора

Газоразрядный счетчик устройство прибора

Газоразрядный счетчик устройство прибора

Газоразрядный счетчик устройство прибора

Газоразрядный счётчик представляет собой металлический или стеклянный цилиндр, внутренняя поверхность покрытая металлом, который является катодом. Вдоль оси цилиндра натягивается тонкая металлическая нить диаметром порядка 100 микрон, которая является анодом.

Газоразрядный счетчик устройство прибора

Пропорциональные счётчики работают при напряжениях, соответствующих участку 2 ВАХ. При напряжении 100‑1000 В между электродами создаётся высокая напряжённость электрического поля и образовавшиеся первичные ионы создают вторичную ионизацию атомов и молекул газа. В таких счётчиках величина тока зависит от уровня ионизирующего излучения.

Счётчики Гейгера-Мюллера работают на 3 участке ВАХ при напряжениях превышающих 1000 В. При действии ионизирующего излучения в пространстве между электродами образуются положительные ионы и отрицательные электроны, которые двигаясь к аноду создают вторичную ионизацию. За счёт высокой напряжённости электрического поля вблизи анода, связанной с малой его площадью, вторичные электроны ускоряются настолько, что вновь ионизируют газ. Число электронов возрастает лавинообразно, возникает коронный разряд, который действует после прекращения ионизирующего излучения. Заряд обрывается включением большого сопротивления 1 МОм.

Счётчики Гейгера-Мюллера характеризуются высокой эффективностью регистрации и большой амплитудой сигнала (около 40 вольт). Недостатки: малая разрешающая способность и большое время восстановления.

Счетчик Гейгера-Мюллера: принцип работы и назначение

Газоразрядный счетчик устройство прибора

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера – обнаруживать излучения ионов — была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Газоразрядный счетчик устройство прибора

Счетчик Гейгера-Мюллера — простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет – вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны – это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ – фотон;
  • α – ядро атома гелия;
  • β – электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Газоразрядный счетчик устройство прибора

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка – катодом. Вместе они – электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке – плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Газоразрядный счетчик устройство прибора

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет — это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Газоразрядный счетчик устройство прибора

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Газоразрядный счетчик устройство прибора

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 – название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Газоразрядный счетчик устройство прибора

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы — это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название – плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение – 400 Вольт.

Рабочая ширина

Рабочая ширина — разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение – 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение – 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение – 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение – не более 2 импульсов за минуту.

Газоразрядный счетчик устройство прибора

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна — в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Газоразрядный счетчик устройство прибора

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности – космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона – радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Радиация: детекторы. Часть первая, газоразрядная

Газоразрядный счетчик устройство прибора

Недавняя статья про опарафиненный детектор нейтронов побудила меня поднять старую тему и написать еще парочку статей на тему радиации. А именно — про детекторы ионизирующих излучений.

Начну я с газоразрядных детекторов. Собственно, в вышеуказанной статье газоразрядный детектор и применен, причем не самый обычный. Но увы, никаких подробностей о его использовании или даже принципах действия мы не увидели, так что пробел этот нужно исправлять.

Ионизация и ионизационная камера

Еще первые опыты Рентгена, Беккереля, четы Кюри и других пионеров исследования рентгеновских лучей и излучения, испускаемого радиоактивными веществами, показали, что эти лучи способны генерировать свободные ионы в воздухе, через которые проходят. Проявлялось это в том, что воздух приобретал электропроводность, разряжая электростатически заряженные тела, что можно было легко обнаружить с помощью простейшего электроскопа. Электроскопы и электрометры стали первыми «дозиметрами» радиоактивных излучений. Опыты показали пропорциональность числа сгенерированных излучением ионных пар поглощенной воздухом энергии, что привело к появлению такого понятия, как экспозиционная доза, определяемая через число ионных пар, рожденных в воздухе при облучении.

Ионизационная камера в принципе проста. Это просто объем, заполненный каким-нибудь газом при каком-нибудь давлении, в который помещены какие-нибудь два электрода. Один электрод находится под положительным потенциалом и собирает отрицательные ионы, другой — наоборот. Заряд, прошедший через камеру, пропорционален дозе, а ток — мощности дозы. Геометрия ионизационной камеры (рис. 1), то есть форма ее электродов и их взаимное расположение могут быть различными, но обычно это или плоская (две пластины с зазором между ними), или коаксиальная (один электрод представляет собой трубу, а другой — цилиндр или проволока, помещенная внутри первого электрода соосно с ним). Заполнена камера может быть самыми различными газами в зависимости от поставленной задачи. Это может быть воздух при атмосферном давлении, если нужно измерять экспозиционную дозу, тяжелые газы, если нужно повысить чувствительность к высоким энергиям, трехфтористый бор или гелий-3, когда стоит задача детектирования нейтронных потоков (бор-10 и гелий-3 легко вступают в реакции с нейтронами, продукты которых вызывают ионизацию). Давление газа тоже выбирают исходя из условий эксперимента: его увеличение способствует повышению эффективности поглощения излучения, но с его ростом снижается вероятность того, что ионы не завязнут в газе и не рекомбинируют по пути, а дойдут до электродов.

Газоразрядный счетчик устройство прибора

Рис.1. Плоская и коаксиальная ионизационные камеры.

Ток, проходящий через ионизационную камеру, очень мал. Допустим, мощность экспозиционной дозы равна 1 Р/ч. Это много. Но по определению единицы рентгена за час будет рождаться лишь 2,082⋅10 9 пар ионов в кубическом сантиметре, каждая из которых заберет электрон с катода и отдаст на анод, если камера будет достаточно велика, чтобы воздух поглотил все излучение. То есть ток в цепи камеры объемом 1 см 3 будет составлять 9,3⋅10 -14 А! А при уровнях, соответствующих естественному радиационному фону этот ток будет ниже еще в сто тысяч раз.

Существуют два способа измерить такой ток. Первый — это зарядить ионизационную камеру и отключить от нее все, кроме чувствительного электрометра с бесконечным входным сопротивлением. Измерив скорость падения напряжения (или перепад напряжения до и после облучения) и зная суммарную емкость ионизационной камеры и электрометра, можно определить дозу или ее мощность. Такую аппаратуру использовали Беккерель и супруги Кюри, и так устроены карманные дозиметры-накопители карандашного типа. Однако чаще нужно знать интенсивность излучения, поэтому поступают по-другому: включают в цепь ионизационной камеры очень высокоомное сопротивление, типичное сопротивление которого выбирают около 100 ГОм. Тогда падение напряжения на этом резисторе при мощности дозы 1 Р/ч составит 9,3 мВ и это значение вполне можно измерить. Правда, чтобы это удалось, входное сопротивление вольтметра должно измеряться тераомами! Раньше основой такого вольтметра почти всегда являлась специальная электрометрическая лампа со всеми вытекающими чудесами типа анодного напряжения в несколько вольт. Смысл последнего — в том, чтобы не происходила ионизация остаточных газов

Газоразрядный счетчик устройство прибора

Рис. 2. Включение электрометрической лампы (из кн.: Шумиловский Н.Н., Стаховский Р.И. Масс-спектральные методы. М.: Энергия. 1966.)

Лучшие электрометрические лампы могут иметь входные (сеточные) токи на уровне 0,1 фА, что эквивалентно мощности дозы

1,2 мР/ч и, не требуя для питания высоких напряжений и большого тока накала, хорошо вписываются в полупроводниковую электронику. Однако они очень чувствительны к внешним воздействиям и не особо долговечны. Альтернативой им является применение специальных полевых транзисторов с ультрамалыми утечками затвора (в отечественной практике для этого чаще всего брали отобранные экземпляры КП304А). Современная элементная база для измерения фемтоамперных токов — это специальные операционные усилители, такие, как ADA4530-1. Всего за 15 американских долларов мы легко и непринужденно получаем входной ток около 1 фА. Такие ОУ обычно включают в схеме трансимпедансного усилителя, то есть огромное сопротивление R включают в цепь обратной связи (рис.3)

Газоразрядный счетчик устройство прибора

й

Чтобы входной ток на уровне 1 фА был реальностью, схему можно монтировать только навесным монтажом или на плате из специального диэлектрика, тщательно соблюдая рекомендации производителя. Ориентироваться при этом имеет смысл на разводку оценочной платы ADA4530-1R-EBZ-TIA со всеми ее защитными кольцами и экранами. Разумеется, усилитель лучше расположить прямо внутри корпуса-экрана ионизационной камеры.

Применимы также схемы электрометрических усилителей на дискретных элементах, вплоть до простейших почти что однотранзисторных схем наподобие тех, что применяются в пожарных извещателях. Применение последних, впрочем, ограничено целями индикации наличия излучения. Так, известна «полониевая ручка», обнаруживающая источники альфа-излучения и рекомендуемая автором публикации всем шпионам и дипломатам. Разумеется, это шутка, но конструкция вполне работоспособна и реагирует, например, на америциевый источник из дымоизвещателя. Кажется невозможным, чтобы она работала, потому что схема усилителя (выходной сигнал которого зажигает светодиод) выполнена на двух составных биполярных транзисторах. Но она, как ни странно, работает, я проверял.

Обычно ионизационные камеры работают в токовом режиме. То есть не делается попыток различить сигналы от отдельных частиц, пересекающих объем камеры. В случае слабоионизирующих частиц это почти невозможно из-за их малости. Импульсные ионизационные камеры используют обычно для регистрации альфа-излучения и высокоэнергетических частиц из космических лучей и ускорителей.

Газовое усиление и пропорциональные счетчики

Для работы ионизационной камеры на нее подают некоторое напряжение: такое, чтобы ионы были достаточно быстро разделены электрическим полем и собраны катодом и анодом. Как будет зависеть ионизационный ток от этого напряжения?

При нулевой разности потенциалов тока не будет. Возникшие ионы и электроны через некоторое время в процессе неупорядоченного теплового движения встречают ионы противоположного знака и рекомбинируют. С ростом разности потенциалов все больше ионов будет успевать осесть на электродах, и ионизационная камера в целом ведет себя в соответствии с законом Ома. Но при достаточно большом напряжении пропорциональность нарушается, так как значительная часть ионов уже собрана электродами. При дальнейшем росте разности потенциалов мы выходим на плато: ток уже не растет.

Газоразрядный счетчик устройство прибора

Рис. 4. ВАХ ионизационной камеры

Но до бесконечности плато продолжаться не может. В какой-то момент начинается самое интересное: ток снова начинает расти. И вот почему: ионы и электроны в электрическом поле ускоряются настолько, что, столкнувшись с нейтральными молекулами, ионизируют и их. В газе появляются дополнительные ионы и электроны, которые включаются в общий ток, и чем больше разность потенциалов, тем этот вклад становится большим.

При достаточно большой разности потенциалов мы можем наблюдать ионные лавины: первичный ион, столкнувшись с несколькими атомами, рождает дополнительные ионы, которые также генерируют еще несколько пар. Таким образом, единичная ионная пара, рожденный радиоактивным излучением, сам в свою очередь рождает множество носителей заряда и ток в цепи, зависящий от интенсивности излучения, оказывается значительно большим по сравнению с током насыщения на плато. Коэффициент такого самоусиления тока (газового усиления) может достигать тысяч и десятков тысяч.

При дальнейшем увеличении напряжения ток растет еще больше, но перестает зависеть от излучения. Возникает самостоятельный разряд: лавины нарастают неограниченно, порождают вторичные лавины, все это излучает жесткий ультрафиолет, который вместе с бомбардировкой электродов ионами производит с них эмиссию электронов и положительных ионов, и дополнительные ионы от радиоактивности уже не играют никакой роли.

Таким образом, выбрав подходящее напряжение, мы можем сильно облегчить задачу измерения ничтожно малых ионизационных токов. И главное — когда каждый ион рождает 1000-10000 вторичных ионов, а каждый квант излучения может породить несколько сотен или тысяч ионов, становятся хорошо различимыми и измеримыми токи от отдельных частиц. Причем амплитуда этих импульсов оказывается пропорциональной количеству первичных ионов, а значит — энергии частицы (более правильно — энергии, оставленной частицей в детекторе), что позволяет эту энергию определять, регистрировать энергетический спектр частиц. Однако ценой этого становится очень высокая чувствительность камеры к составу, температуре и давлению газовой среды внутри нее, напряжению, геометрии электродов.

Наиболее оптимальная конструкция пропорционального счетчика, при которой размножение ионов приобретает характер управляемого процесса — это коаксиальная конструкция, в которой анодом является тонкая (сотые доли миллиметра) проволока, натянутая по оси цилиндрического катода. В таком случае ударная ионизация молекул газа происходит лишь рядом с анодом, в области большой, до 40 кВ/см, напряженности электрического поля, никогда не захватывая всего пространства между катодом и анодом. Большое пространство, в котором напряженность поля недостаточна для развития лавин и происходит только дрейф положительных ионов к катоду, предотвращает развитие «зачатков» самостоятельного разряда — стримеров. Дополнительно их образование подавляют, вводя в газовую смесь многоатомные органические молекулы (метан, пропан и т.п.), которые являются «ловушками» для стримера, создавая на пути его головы своего рода дымовую завесу, поглощающую жесткое УФ-излучение, испускаемое ею и играющее существенную роль в распространении стримера и последующем возникновении самостоятельного разряда.

Газоразрядный счетчик устройство прибора

Рис. 5. Пропорциональные счетчики СРМ-19

Типовое применение пропорционального счетчика — это спектрометрия мягкого рентгеновского излучения с энергией ниже 20 кэВ, в частности — для рентгенофлюоресцентного анализа. При такой энергии бессильны сцинтилляционные детекторы, способные только посчитать частицы, но не определить их энергию, а полупроводниковые до сих пор дороги и требуют для хорошего энергетического разрешения глубокого охлаждения. Для доступа рентгеновского излучения в них делают бериллиевое или майларовое окно (рис.5). Зачастую их делают в проточном исполнении, так как газовая смесь при работе постепенно теряет свои свойства из-за разложения органической добавки. Применяются газовые смеси водород-метан, аргон-метан, ксенон-метан и другие.

Газоразрядный счетчик устройство прибора

Рис. 6. Амплитудный спектр импульсов пропорционального счетчика нейтронов с гелиевым заполнением

Другое распространенное применение пропорциональных счетчиков, которое скорее может встретиться в радиолюбительской практике — это счет нейтронов. Счетчики нейтронов обычно заполняют гелием-3 с небольшой добавкой инертных газов под довольно высоким (2-4 атм) давлением, ядро которого, вступив в реакцию с медленным нейтроном, превращается в разлетающиеся в разные стороны протон и ядро трития. Суммарная их энергия составляет 764 кэВ, и они оставляют по пути пролета в газе множество ионов, давая импульсы, резко отличающиеся по амплитуде от фоновых, вызванных гамма-излучением (рис. 6, узкий пик справа, соответствующий полному поглощению частиц газом). Пропорциональные детекторы нейтронов могут также быть заполнены газообразным трифторидом бора, но чаще всего их используют в другом режиме — в режиме постоянного коронного разряда.

Газоразрядный счетчик устройство прибора

Рис.7. Включение пропорционального счетчика нейтронов

Напряжение питания пропорциональных счетчиков обычно составляет 1000..3000 В и для целей спектрометрии должно выдерживаться с высочайшей точностью. Для нейтронных счетчиков такая точность не нужна, но все же следует учитывать, что выраженного плато такие счетчики не имеют. Амплитуда импульсов невелика, единицы милливольт. Тут очень важно подобрать оптимальное время формирования импульса. Сам импульс тока довольно короткий — примерно 0,6 мкс. Импульс этот заряжает емкость счетчика и монтажа, а также входную емкость пересчетного устройства, формируя фронт импульса напряжения. Спад же возникает в процессе разряда этой емкости на нагрузку. Постоянную времени этого спада выбирают из следующих соображений: если она будет около 0,5 мкс, амплитуда импульсов от нейтронов окажется слишком низкой, и вместе с тем низкоамплитудные импульсы от гамма-фона будут сильнее мешать регистрации. С ростом времени формирования последние как бы размазываются и сливаются друг с другом, и импульсы от нейтронов становятся более выраженными. При слишком большом времени напротив, уже импульсы от нейтронов «размазываются». В большинстве случаев время формирования выбирают в районе 3-5 мкс.

Счетчик Гейгера-Мюллера

В счетчик Гейгера-Мюллера пропорциональный счетчик превращается, если повысить напряжение между его электродами. С ростом напряжения растет и коэффициент газового усиления. Но до бесконечности он расти не может. В какой-то момент лавина, несмотря на неоднородность поля, превращается в стример. Канал стримера является проводящей средой и в его вершине высокая напряженность поля, и растущий стример несет эту область впереди себя, пробивая себе путь. Достигнув катода, стример соединяет катод и анод проводящим ионизированным каналом и возникает самостоятельный разряд. Так единственная частица переводит детектор из непроводящего состояния в проводящее и вывести из него может только снятие напряжения на время, достаточное для рекомбинации заряженных частиц внутри счетчика. Сделать это можно, например, включив в цепь счетчика очень большое сопротивление: при возникновении разряда емкость, образованная электродами счетчика разряжается и напряжение падает вплоть до погасания разряда, а после этого емкость счетчика заряжается вновь и он снова готов к регистрации следующей частицы. Правда, мертвое время — время, в течение которого счетчик заряжается и нечувствителен пока — слишком велико, оно может достигать миллисекунд! Что делать? Варианта два: либо, снизив сопротивление в цепи анода до разумного, при котором мертвое время приемлемо, подключить внешнюю схему, которая, зафиксировав фронт импульса, обрывает разряд, закоротив счетчик, и, выждав несколько микросекунд до деионизации, снимает закоротку (рис. 8). Либо изобрести самогасящийся счетчик.

Газоразрядный счетчик устройство прибора

Рис. 8. Схема принудительного гашения разряда в счетчике Гейгера.

Как сделать счетчик самогасящимся? Помните, когда шла речь о пропорциональном счетчике, я говорил о добавке органического газа? Это работает и в счетчике Гейгера. Если внутри счетчика будет компонент, который под действием разряда сделает среду между катодом и анодом непрозрачной, разряд погаснет, так как исчезнет один из факторов его поддержания —фотоэлектронная эмиссия из катода. Обычно в газовое наполнение счетчиков Гейгера вводят или спирт, или галогены — бром и йод. Спирт используют в высоковольтных счетчиках, он обеспечивает поддержание обширного плато с малым наклоном, но активно расходуется при каждом импульсе, так что ресурс таких детекторов невелик, не более нескольких десятков миллионов импульсов. Чаще встречаются галогеновые счетчики с рабочим напряжением 400-900 В. Галогены превращаются в непрозрачную среду из-за диссоциации молекул на атомы, которые немедленно воссоединяются, так что гасящая присадка в галогеновых счетчиках не расходуется. Однако из-за химической активности все же происходит постепенная ее потеря из-за реакции с электродами. Так что и у этих детекторов ресурс не бесконечен, но он составляет миллиарды импульсов.

Применение самогасящего счетчика Гейгера предельно просто. Подать +400 вольт на анод через сопротивление в несколько МОм и снимать импульсы с катода, включив между ним и землей нагрузочное сопротивление. Или с анода — через разделительный конденсатор. Амплитуда импульсов тут не милливольты, а вольты и десятки вольт, а зависимость чувствительности счетчика от напряжения имеет хорошо выраженное плато протяженностью 80-100 В. Но увы: ни амплитуда, ни форма импульсов абсолютно не несут никакой информации ни о природе частиц, ни о их энергии. Существуют, впрочем, некоторые ухищрения. Например, если поставить один за другим два плоских (типа Pancake) счетчика, можно одновременно регистрировать бета- и гамма-излучение, разделяя их на два канала. А сделав катод счетчика из меди, а окно — из никеля, мы получим счетчик, очень чувствительный к излучению характеристической линии CuKα и почти не видящий остального рентгеновского излучения в ее окрестностях.

Газоразрядный счетчик устройство прибора

Рис. 9. Счетчик СИ-45Ф

А как вы думаете, для регистрации какого излучения предназначен вот этот счетчик Гейгера-Мюллера (рис.9)?
Это детектор ультрафиолетового излучения. Причем — солнечно-слепой. Его чувствительность к естественному и искусственному освещению практически равна нулю. Зато пламя свечи он обнаруживает на расстоянии в 2-3 метра при засветке прямым солнечным светом. Используется в качестве датчика пламени. Кстати, он несамогасящийся (схема гашения, приведенная выше — именно для этого счетчика).

На этом я завершаю разговор о счетчике Гейгера-Мюллера, потому что писал об этом несколько лет назад в этой статье. И лишь для перехода к следующей главе спрошу читателя: а что будет, если напряжение на счетчике Гейгера повысить еще больше? И отвечу на него: счетчик «загорится». Гасящая присадка уже не сможет прекращать разряд и он станет непрерывным. В этом режиме счетчик полностью теряет всякую чувствительность к излучению.

Коронные счетчики

Но так будет только при низком давлении газа, при котором наблюдается тлеющий разряд. Если поднять давление до атмосферного, характер разряда меняется и в определенном диапазоне напряжений наблюдается коронный разряд. При нем анод «обрастает шубой» из электронно-ионных лавин, которые обрываются, не достигая катода. И в этом режиме, в отличие от режима тлеющего разряда, разряд оказывается чувствителен к сильно ионизирующим частицам.

Механизм этой чувствительности такой: частица оставляет в газе своего рода след — канал из ионизированного газа. В отсутствии внешней ионизации лавина, возникнув на аноде в области максимальной напряженности поля, растет до тех пор, пока напряженность в его вершине не упадет ниже критической под действием поля, создаваемого соседними лавинами. Картина меняется, когда вершина такой лавины попадает в ионизированный канал: дополнительная ионизация позволяет ей вырваться вперед из общей массы и образовать вокруг себя область с высокой напряженностью поля. Это приводит к появлению кратковременного импульса тока на фоне шума из слившихся вместе более слабых импульсов, вызываемых отдельными лавинами разряда.

В отличие от режима Гейгера-Мюллера, в коронном режиме счетчик остается чувствительным к энергии частиц. Слабоионизирующие частицы — гамма-кванты и выбитые ими электроны — если и порождают импульсы тока, то они тонут в шуме короны. Только при высокой интенсивности гамма-излучения, свыше 50-1000 Р/ч, наблюдается значительное усиление этого шума и увеличение среднего тока. В большинстве практических случаев, не связанных с работой внутри активной зоны реактора, можно считать, что коронные счетчики вообще нечувствительны к гамма-излучению.

Коронные счетчики применяют обычно для детектирования альфа-частиц и нейтронов. Счетчики альфа-частиц можно сделать разборным и помещать препарат непосредственно внутрь: при рабочем давлении в 1 атм нет необходимости в вакуумной системе и достаточно промыть объем счетчика потоком смеси Пеннинга из баллончика. Тем не менее, промышленно выпускаемые счетчики (САТ-7, САТ-8, СИ-9АМ) снабжены окнами из тонкой слюды.

Коронные счетчики нейтронов заполняют обычно смесью, содержащей BF3 при давлении больше атмосферного или содержат боросодержащий твердый радиатор. Как и гелиевые, они в основном чувствительны к медленным и тепловым нейтронам, так что для регистрации быстрых нейтронов их нужно помещать в замедлитель. В коронном режиме могут работать и многие гелиевые счетчики, рассчитанные на пропорциональный режим.

Газоразрядный счетчик устройство прибора

Рис. 10. Выходной сигнал коронного счетчика нейтронов

Включение счетчика в коронном режиме почти ничем не отличается от пропорционального, но для поддержания устойчивого коронного разряда и сопротивление в анодной цепи должно быть велико. Его следует выбирать согласно документации на счетчик: так, для относительно низковольтного СИ-9АМ оно составляет 6-8 МОм, для более высоковольтных нейтронных счетчиков, таких, как СНМ-16 — 47 МОм. Обычно схема включения коронных счетчиков с рекомендуемыми номиналами приводится в паспорте, и ее следует придерживаться. Выходной сигнал представляет собой шум, на фоне которого наблюдаются импульсы, форма и длительность которых зависит от номиналов внешних элементов. Амплитуда этих импульсов составляет десятки милливольт, иногда до 150-200 мВ. Следует подобрать порог дискриминации таким образом, чтобы шум не попадал в счетный канал. При этом нужно учитывать, что амплитуда импульсов зависит от энергии частиц и выбор порога дискриминации — это компромисс между эффективностью регистрации и фоном и чувствительностью к гамма-излучению.

У коронных счетчиков, как и у счетчиков Гейгера-Мюллера, имеется хорошо выраженное плато на счетной характеристике. Наклон этого плато обратный: скорость счета не растет с напряжением, а падает. При этом амплитуда импульсов почти не зависит от напряжения питания.

Заключение

На этом я заканчиваю рассмотрение газоразрядных детекторов. Я не касался здесь детекторов, задачей которых является восстановление пространственной траектории частиц — искровых и стримерных камер, многоэлектродных пропорциональных и дрейфовых камер, так как имею о них лишь самое общее представление. Следующая статья будет посвящена сцинтилляционным детекторам.

Источник